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Abstract 

 

 

External Beam Radiation Therapy (EBRT) is a common treatment option for patients 

with prostate cancer. When treating the prostate with EBRT, a geometric volume (PTV 

margin) is added around the prostate to account for uncertainties in treatment planning and 

delivery. Current methods for estimating PTV margins rely on the analysis of population-

based inter- and intra-fraction motion data. These methods do not consider the patient-to-

patient differences in demographic or clinical presentation of patient specific factors 

(PSFs), such as age, weight, body-mass index, health and performance status, prostate-

specific antigen levels, Gleason scores, presence of bowel problems, or other health 

conditions. The purpose of this thesis is to investigate the feasibility using regression-based 

predictive algorithms to predict the extent of prostate motion for the purpose of 



 iv 

personalizing the PTV margin using PSFs as inputs. Benchmarking simulations of Linear, 

Ridge, LASSO, SVR, kNN, and MLP algorithms were performed by simulating prostate 

intra-fraction motion and realistic variations in PSFs. Sample sizes ranged from n=20 to 

800, with varying levels of noise into the motion data (0-10mm). Leave-one-out cross 

validation was used to train and validate algorithm performance. The results suggest that 

algorithm performance improves significantly within the first 50 – 100 patients, and this 

rate of improvement is independent of noise in prostate motion. The Ridge regression 

algorithm predicted intra-fraction motion to the lowest mean absolute error in simulated 

motion, performing especially well in small datasets. To evaluate the clinical utility of this 

approach, pre- and post-treatment prostate motion data, treatment time data, and rectal 

distension data was recorded in 21 patients, along with a variety of PSFs. In the analysis 

of patient data, the LASSO algorithm out-performed the Ridge algorithm, predicting the 

mean and standard deviation of an individual prostate cancer patient’s intra-fraction motion 

to within 0.8mm and 0.4 mm mean absolute error, respectively. However, prostate motion 

predictions did not correlate with PSFs, possibly due to the small sample size. This work 

demonstrates the feasibility of using regression-based algorithms for predicting prostate 

motion, and hence the opportunity to personalize PTV margins in prostate cancer patients. 
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1 Introduction 

 

1.1 Radiation Therapy 

 

Radiation therapy is a cancer treatment option that uses ionizing radiation to damage and/or 

kill cancer cells in order to cease their growth. Radiation therapy is used with either curative 

or palliative intent. Curative radiation therapy is treatment with intent to permanently kill 

the cancer. Palliative radiation therapy is treatment with intent to limit symptoms of the 

cancer. Approximately 50% of patients diagnosed with cancer receive radiation therapy as 

a part of their treatment [1], possibly in conjunction with other treatments such as surgery 

and chemotherapy, making it a very common option for cancer care. 

 

At the molecular level, radiation therapy is fundamentally a stochastic process. Ionizing 

radiation, defined as radiation of sufficient energy to ionize the medium, enters the tissue 

and deposits none, some, or all its energy [2]. The energy that is deposited typically comes 

in the form of electrons which are set into motion by the incident radiation, resulting in 

ionizations of molecules within the individual cells that make up the tissue [3]. The total 

energy deposited into the irradiated tissue can be described quantitatively by the absorbed 

dose, measured in Gy [J/kg], or the mean energy deposited per kg of tissue. 

 

Deposited energy can cause radiation induced DNA damage to occur through two avenues. 

Radiation can either directly ionize the bonds within the DNA (direct damage) or it can 

ionize other components of the cell (typically water) producing free radicals, which 
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subsequently damage the cell’s DNA [4]. DNA is a critically important component of the 

cell and damage to the DNA is lethal to the cell if that damage is not repairable. In order 

to improve the likelihood of killing the cancer cells and/or controlling the growth of the 

cancer body, it is important to irradiate the cancerous region to a sufficiently high and 

uniform dose. A larger dose increases the number of ionizations that occur within the cells, 

which leads to more DNA damage, which increases the probability of cellular death. A 

larger dose also increases the risk of normal tissue complications, however [4]. 

 

Normal tissue complications occur because normal (non-cancer) tissue cells are affected 

by radiation. The complications that arise due to this irradiation can be either short term 

(days to weeks) or long term (months to years) [4]. Great care is taken to deliver radiation 

in a way that achieves the goal of the treatment, while also minimizing normal tissue 

complications. This includes setting various maximum dose limits to radiation sensitive 

organs, often including volumetric dose limits as well. These limits are specific to each 

organ as there is variation in organ susceptibility to radiation. Given the necessity of 

irradiating the cancerous region to a sufficiently high and uniform dose, while also being 

mindful of the surrounding radiation sensitive normal tissues (organs), the differences 

between cancer cells and normal cells are important to exploit. 

 

There are two main considerations when selectively targeting cancer cells, and not normal 

cells: biological considerations and geometric considerations. Biological considerations 

refer to the differences in biological response to radiation between normal cells and cancer 

cells. In general, cancer cells are not able to recover from sub-lethal radiation damage as 
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well as normal tissue cells. This property is exploited through fractionation. By irradiating 

the cells in small doses each day instead of a single large dose, the cumulative cell death is 

ultimately greater for the cancer cells relative to the normal tissue cells. Geometric 

considerations refer to the position of cancer in the body. Cancer destined for treatment 

with radiation is often quite localized. The cancer cells are typically clustered together, 

forming a tumour body. By selectively irradiating the region consisting of an 

overwhelming proportion of cancer cells, a larger proportion of the tumour cells are likely 

to die compared to the normal cells. 

1.1.1 Volumes in Radiation Therapy 

 

ICRU 62 defines several geometric volumes involved in the radiation therapy process [5]. 

These volumes are defined to guide treatment planning by specifying the geometric 

position of the cancerous region as well as the surrounding radiation sensitive normal 

tissues. While all ICRU treatment volumes are discussed in the radiation therapy 

background section, two important volumes relevant to this thesis are the CTV and PTV. 

The CTV is defined as a purely clinical volume independent of treatment modality, 

whereas the PTV is defined dependent on the chosen treatment modality and is the volume 

to which dose is prescribed and reported. Their ICRU definitions are included below, but 

also discussed in more detail in chapter two: 

 

The clinical target volume (CTV) is defined in ICRU 62 as “a tissue volume that contains 

a demonstrable GTV and/or subclinical malignant disease that must be eliminated. This 

volume must be treated adequately in order to achieve the aim of radical therapy.” 
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The planning target volume (PTV) is defined in ICRU 62 as “a geometrical concept used 

for treatment planning, and it is defined to select appropriate beam sizes and beam 

arrangements, to ensure that the prescribed dose is actually delivered to the CTV.” 

 

1.2 PTV Margin 

 

The PTV margin is an additional geometric volume that surrounds the identified cancerous 

region (CTV). The size of the PTV margin is set to account for the spatial uncertainties 

introduced in the radiation therapy process and ensures the CTV actually receives the 

prescription radiation dose. Uncertainties in treatment planning, set-up, and delivery are all 

accounted for in the PTV margin [6]. 

 

Ideally the PTV margin is large enough to account for all the uncertainties previously 

mentioned, but small enough to limit significant dose to important normal tissue structures, 

and consequentially, the side effects of the treatment. This is especially important 

considering that the PTV margin, at least in principle, consists of only normal tissue cells 

which do not require radiation. In prostate cancer treatment particularly, the PTV margin 

may extend isotropically by several millimeters to include portions of the rectum and 

bladder. These two important organs are likely to suffer radiation toxicity. 

1.2.1 Motivation for Personalized PTV Margin 

 

PTV margins are currently estimated using population-based approaches. This may be 

performed by measuring the mean and standard deviation of tumour motion across a large 

number of patients and using these statistics to estimate the behaviour of future patients 
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[7]. Another, more specific approach, is to break down the individual contributions of the 

uncertainties in the planning, set-up, and delivery of radiation therapy, including patient 

motion, to estimate a PTV margin [6]. Fundamentally, both of these population-based 

approaches are designed to estimate a margin for the majority of patients, but not a specific 

patient. 

 

By considering the differences in motion between patients, the PTV margin could be 

expanded or reduced depending of individual patient requirements. In particular, there may 

be patient-specific factors (PSFs) that are related to patient motion which can be used to 

anticipate patients that do not fit the standard population-based PTV margin. A patient may 

actually require a larger PTV margin, for example, or a smaller one based on their PSF 

profile. In either case, knowledge of these inter-patient motion variations and their 

corresponding predictors are important for treatment quality improvement. 

 

1.3 Thesis Scope 

 

The purpose of this thesis is to investigate the feasibility of personalized PTV margins for 

external beam radiation therapy of the prostate, with particular emphasis on regression-

based predictive algorithms [8]. This includes the analysis of prostate motions and 

rotations, as well as their associated potential predictors, the PSFs. Population-based 

statistics are calculated to estimate the typical range of motions/rotations as well as 

investigate the relationship between PSFs and motions/rotations for prostate cancer 

patients in the BCCA-VIC. 
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Predictive algorithms are benchmarked for application in predicting patient intra-fraction 

motion. Clinically relevant motion data and PSFs are generated and used to evaluate the 

performance of several predictive algorithms, with additional emphasis on patient data 

requirements and the influence of input data noise. Benchmarked algorithms were applied 

to actual patient data and evaluated for use in predicting intra-fraction motion along all 

three spatial directions. The motion predictions generated by the algorithm with the best 

performance were incorporated, along with other uncertainties in radiation therapy 

planning, set-up, and delivery, to produce a personalized PTV margin. 

 

Chapter 2 provides an overview of basic radiation therapy. Chapter 3 gives a general 

overview on statistics and other relevant concepts. Chapter 4 outlines the methodology 

used in this thesis. Chapter 5 discusses the results of the PSFs and other population-based 

inferences, the results of the predictive algorithm benchmarking, the results of the 

predictive algorithms when applied to actual patient data, and the formulation of a 

personalized PTV margin. Chapter 6 discusses these results, their relevance to personalized 

prostate EBRT, as well as options for future work. Chapter 7 concludes the thesis and offers 

thoughts on future work. 



 

 

7 

2 Radiation Therapy Background 

 

This chapter will cover the necessary radiation therapy background for this research 

project. 

 

2.1 External Beam Radiation Therapy 

 

External beam radiation therapy (EBRT) describes a collection of treatment methods used 

to deliver ionizing radiation from outside the patient (as opposed to radiation originating 

from sources placed inside the patient) in order to kill cancer cells. EBRT includes kV x-

ray treatment units (superficial and orthovoltage units) and teletherapy (gamma ray source 

machines), but is most commonly performed using a medical linear accelerator (linac) [9]. 

2.1.1 Linac Photon Generation and Modulation 

 

Linacs generate high-energy (MV), ionizing radiation which can be used to irradiate and 

destroy cancer cells. Ionizing radiation produced by linacs include either photons or 

electrons, however only photon generation will be discussed here as they are used in the 

treatment of prostate cancer described in this thesis. Figure 1 shows a diagram of the linac 

along with its several general components. 
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Figure 1: Linac with important components (from Podgorsak, 2005, pg. 140) 

 

Electrons are injected into an accelerating waveguide by an electron gun via thermionic 

emission. Simultaneous with this injection, a radio frequency (RF) electromagnetic wave, 

produced by an RF power source, enters the accelerating waveguide. The RF wave 

accelerates the injected electrons to MeV kinetic energies, where bending magnetic then 

re-directs them onto a high atomic number target. The deceleration of the electrons in the 

x-ray target produce high energy bremsstrahlung x-ray radiation, which is further 

modulated in the linac treatment head for clinical use [9]. 

 

Clinical x-ray beam modulation is performed using a number of different components 

within the treatment head. A flattening filter is typically used in combination with the x-

ray target to produce a uniform intensity x-ray beam. Primary and secondary collimators 

are used to define the maximum extent of the treatment field. A multi-leaf collimator 

(MLC) is often used as a collimator for further field modulation by defining custom, 
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dynamic radiation fields for patient treatments [10]. Intensity Modulated Radiation 

Therapy (IMRT), for example, is a common treatment option where the MLC modulates 

the intensity of radiation in a given field treatment field to achieve a superior overall dose 

distribution [11]. 

2.1.2 Linac Treatment Couch and Coordinate System 

The linac is associated with a patient support assembly, often called the treatment couch. 

The treatment couch typically allows motion along three spatial dimensions (vertical, 

longitudinal, and lateral). Figure 2 shows a treatment couch along with an associated 3D 

couch motion coordinate system (Isocentric standard representation, Varian IEC scale). 

The vertical axis is parallel to the patient’s anterior-posterior axis, with the posterior 

direction defined as positive. The longitudinal axis is parallel to the patient’s superior-

inferior axis, with the superior direction defined as positive. The lateral axis is parallel to 

the patient’s right-left axis, with the left direction defined as positive. 

 

Figure 2: Linac with accompanying coordinate system axes. 
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While 3D couch motion is more commonly used for routine treatments such as prostate 

EBRT, 6D couch motion is also possible on more specialized couches. 6D couch motion 

includes the three motion axes as well as three rotational axes. Rotation about the lateral 

axis is called the pitch. Rotation about the longitudinal axis is called the roll. Rotation about 

the vertical axis is called the yaw. 

2.1.3 Linac on-board imaging 

Modern linacs are equipped with an on-board kV imaging system (OBI) to assist with 

validation of patient set-up. OBI consists of a kV x-ray source and detector which are both 

mounted to the gantry opposite each other (Figure 3). 

 

Figure 3: Linac OBI with kV x-ray source and detector labelled. 

 

There are two principle methods of imaging the patient using OBI, which are both used for 

prostate image guidance. The first is to collect two perpendicular patient images, one along 

the vertical axis and one along the lateral axis. This method is referred to a perpendicular-
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paired or orthogonal-paired imaging and is typically used in conjunction with high density 

implanted fiducial markers to generate sufficient contrast. A kV image typically delivers 1 

– 3 mGy of dose to the patient per image [12]. The second OBI method is a cone beam CT 

(CBCT). CBCT is performed by continuous x-ray fluorescence and gantry rotation around 

the patient, collecting several projection images of the patient’s internal anatomy. The 

collected projections are then reconstructed to create a volumetric representation of the 

patient’s internal anatomy. A CBCT typically delivers a dose of 16 mGy to the center of 

the body and 23 mGy to the body’s surface [12]. 

 

2.2 External Beam Radiation Therapy Process 

The EBRT process involves multiple steps, requiring coordination between physicians, 

physicists, dosimetrists, and therapists. Patient imaging is first performed to obtain a digital 

representation of the patient’s internal anatomy. This is typically done using a computed 

tomography (CT) scanner, although other modalities may be used in addition to CT 

depending on the particular treatment [10]. 

 

A physician uses the image dataset collected by the CT scanner to identify and contour the 

region to be treated (CTV) as well as important organs at risk (OAR). Once the important 

volumes are defined, a dose is prescribed to the PTV and dose limits are set for the OAR. 

The CT image dataset is also often used (always used if no physician is present at CT scan) 

to determine the resultant couch shift between the patient’s CT simulation position and the 

treatment isocenter position (often located within the PTV) [10]. 
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Beam arrangement and parameters are determined by a treatment planning system used by 

dosimetrists, and sometimes physicists, in a process called plan optimization. Typically, an 

initial dose distribution to the PTV and surrounding normal tissues is calculated and 

assessed based on the prescription dose and dose limits. If dose distribution improvements 

are required, the importance of the different dose constraints are often adjusted to modify 

the beam parameters, and improve the dose distribution. At VIC, a plan requires approval 

from a physician and two physicists (including a second check) before it is used for patient 

treatment. 

 

An approved plan is then transferred to the linac for delivery to the patient. A course of 

radiation therapy is generally a multi-week process, where delivery of the total prescribed 

dose to the PTV is divided into the number of fractions. Every fraction the patient is set-

up by laser alignment, which is then verified and corrected using OBI, to ensure the 

accuracy of the treatment. 

2.2.1 External Beam Radiation Therapy of the Prostate 

EBRT of the prostate at the VICC is typically planned using 5 intensity-modulated 

treatment fields, although 7 fields may be used for larger patients. The five treatment fields 

are planned at gantry angles of 100°, 50°, 310°, 260°, and 0°. PTV dose prescription for 

radiation therapy of the prostate is typically 74 to 78 Gy over 37 to 39 fractions, which 

equates to 2 Gy per fraction. Figure 4 shows a standard 5-field prostate plan. Figure 5 

shows the various motion and rotation directions available to the prostate. 
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Figure 4: Example of five-field prostate EBRT plan. Five intensity-modulated radiation fields 

are delivered at gantry angles of 100°, 50°, 310°, 260°, and 0°. The red circle is the PTV 

contour. 

 

Figure 5: 3D representation of prostate and neighbouring organs, along with motion and 

rotation axes. 
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2.3 Volumes and Margins in Radiation Therapy 

Figure 6 shows the various volumes and margins defined in radiation therapy as defined in 

ICRU Report 62. 

 

Figure 6: Margins defined in radiation therapy in accordance with ICRU 62 (courtesy I 

Spadinger). 

 

The gross tumour volume (GTV) is defined in ICRU 62 as “the gross demonstrable extent 

and location of the malignant growth.” 

 

The clinical target volume (CTV) is defined in ICRU 62 as “a tissue volume that contains 

a demonstrable GTV and/or subclinical malignant disease that must be eliminated. This 

volume must be treated adequately in order to achieve the aim of radical therapy.” 

 

The planning target volume (PTV) is defined in ICRU 62 as “a geometrical concept used 

for treatment planning, and it is defined to select appropriate beam sizes and beam 

arrangements, to ensure that the prescribed dose is actually delivered to the CTV.” 
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The PTV therefore includes the CTV plus an additional margin (the PTV margin) to 

account for uncertainties in treatment set-up and delivery. Conceptually, the PTV margin 

includes two components: the internal margin and the set-up margin. The internal margin 

accounts for uncertainties caused by “physiologic movements and variations in size, shape, 

and position of the CTV”. These uncertainties cannot be easily controlled and may include 

patient breathing, gut peristalsis, bowel movements, and more. The set-up margin accounts 

for uncertainties caused by patient positioning and beam alignment, which may include 

patient positioning variation, equipment mechanical uncertainties, and set-up errors in 

transfer from simulator to treatment unit for example. 

 

The treated volume is the volume that receives a clinically high dose. This includes the 

PTV and additional tissue due to limitations in radiation therapy technology (e.g. MLC leaf 

thickness/resolution). The irradiated volume is the additional volume around the treated 

volume which receives a dose that may be significant to surrounding normal tissues. 

 

2.4 PTV Margin Estimation 

2.4.1 Standard Deviation Approach 

One method to estimate a PTV margin is to record and monitor the motion of a large 

number of previous patients in order to estimate the motion of future patients. The mean 

and standard deviations provide an indication of typical motion to be expected during the 

treatment. From this the PTV margin is set to account for the motion of a large proportion 
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of the population. Ideally the only patients not covered by the PTV margin are those who 

experience some unexpected contributors to motion during their treatment. 

2.4.2 van Herk Formula 

The van Herk formula is a population-based approach to estimate a PTV margin. It 

combines all systematic and random errors during radiation therapy planning and delivery 

to generate a margin that ensures 90% of the patient population receives a minimum dose 

of 95% to the CTV. [6] 

 

In radiation therapy, a systematic error can be defined as an error that affects all fractions 

in a similar magnitude and direction throughout the whole course. The result of a 

systematic error is a difference in the position between the planned and delivered radiation. 

A random error affects an individual fraction. The result of a random error over the whole 

course of radiation is an increased spread in the dose distribution. These systematic and 

random error contributions can be broken down further into several sub-groups: Errors due 

to target delineation, errors due to set-up, errors due to inter-fraction motion, and errors 

due to intra-fraction motion. 

 

Target delineation is a purely systematic error since it is identified once at the beginning 

and is based on inter-physician and intra-physician contouring uncertainty as well as 

imaging modality resolution. 

 

Set-up errors can be both systematic and random. A systematic set-up error may be caused 

by fiducial marker drift, patient weight loss, or CTV shrinkage for example. A random set-
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up error may be caused by therapist matching uncertainty or by variability in organ 

(bladder, rectum, etc) fullness for example. 

 

Inter-fraction motion error is the error introduced between fractions due to patient 

repositioning. This error is effectively eliminated using image guidance. 

 

Intra-fraction error is the error introduced due to target motion after the pre-treatment 

imaging and prior to, or during the treatment. Intra-fraction errors are typically random 

errors caused by variability in patient motion. It may also have a systematic component 

caused by organ drift, however. 

 

The van Herk PTV margin is estimated using the individual contributions of these errors: 

 

𝑃𝑇𝑉 𝑀𝑎𝑟𝑔𝑖𝑛 = 2.5∑𝑝𝑜𝑝 + 0.7𝜎𝑝𝑜𝑝 

 

The total population-based systematic error contribution, Σ𝑝𝑜𝑝, is calculated by adding the 

individual systematic error contributions in quadrature: 

 

Σpop
2 = Σ𝑚

2 + Σ𝑠
2 + Σ𝑑

2  

 

Σ𝑠 is the systematic error due to set-up uncertainty. 

Σ𝑑 is the systematic error due to target delineation. 



 

 

18 

Σ𝑚 is the systematic error due to organ motion, which is estimated as the standard deviation 

of all individual patient mean intra-fraction motions (an indication of the reproducibility of 

mean intra-fraction motion). 

 

The total population-based random error contribution, 𝜎𝑝𝑜𝑝, is calculated: 

 

𝜎𝑝𝑜𝑝
2 = 𝜎𝑚

2 + 𝜎𝑠
2 

 

 𝜎𝑚 is the random error due to organ motion, which is estimated as the root-mean-square 

of all individual patient intra-fraction motion standard deviations (an indication of the 

average random motion an individual patient experiences). 

 𝜎𝑠 is the random error due to set-up uncertainty. 
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3 Statistical Analysis Background 

 

This chapter will cover the basis of the data analysis and techniques used in this work. This 

includes an introduction to data preprocessing and basic statistics. An introduction to 

predictive algorithms used for regression is also included with focus on model selection, 

as well as training and cross-validation. 

 

3.1 Overview 

Data analysis is the general process of investigating data to extract useful information.  This 

is typically performed by following a general methodology: Data preprocessing, 

information extraction, information evaluation, and information presentation. This section 

of the chapter introduces important elements and definitions relevant to the data analysis 

process in this work. 

 

3.2 Data Preprocessing 

Data pre-processing is the broad process through which data is prepared to be investigated 

for useful knowledge. This is an important step in the data analysis process and often 

involves some or all of data cleaning, data integration, and data transformation [13]. A brief 

introduction to these concepts is provided in this section. For specific approaches used in 

this work, please refer to the methodology section. 
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Data cleaning deals with common data collection problems such as missing data, 

inconsistent data, and noisy data. There are many methods to deal with these problems and 

the approach is ultimately chosen based on the problems specific to the task. Missing and 

otherwise inconsistent data can be dealt with, for example, by ignoring the whole patient’s 

data entry, filling the patient’s entries manually, filling the missing entry with a 

summarizing statistic (mean, median, etc.), or filling the missing entries with some dummy 

constant (such as not-a-number). Noisy data (data entries with a large variance), can be 

cleaned by binning or otherwise aggregating the data. 

 

Data integration is the process through which data from multiple sources (and likely data 

structures) are bought together. The two most common difficulties in this process are 

properly associating two or more datasets, and merging different data structures. 

 

Data transformation is the process through which the raw input data is restructured in a 

way more appropriate for extracting useful information. Data transformation techniques 

may include summarizing input data (mean, min, max), creating new fields more relevant 

to the study from pre-existing fields (for instance by subtraction), and data scaling. 
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3.3 Basic Statistics Definitions 

Sample Mean 

For a set of n observations, the sample mean, �̅�, of the set of 𝑥𝑖 is defined: 

 

�̅� =
1

𝑛
 ∑𝑥𝑖

𝑛

𝑖=1

 

Sample Standard Deviation 

For a set of n observations, the sample standard deviation, σ, of the set of 𝑥𝑖 is defined as: 

 

𝜎 = √
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)2
𝑛

𝑖=1

 

 

Where �̅� is the sample mean of the set of 𝑥𝑖. 

 

Pearson Correlation 

The Pearson correlation, r, tests the degree to which two variables, x and y, vary linearly 

with each other: 

𝑟 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)
2𝑛

𝑖=1 √∑ (𝑦𝑖 − �̅�)
2𝑛

𝑖=1

 

 

A perfect positive correlation yields a result of +1, a perfect negative correlation yields a 

result of -1, and correlation of 0 indicates no relationship between the variables. 
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Spearman Correlation 

The Spearman correlation, ρ, tests the degree to which the rankings of two variables, x and 

y, vary linearly with each other: 

 

𝜌 =
∑ (𝑟𝑎𝑛𝑘(𝑥𝑖) − 𝑟𝑎𝑛𝑘(�̅�))(𝑟𝑎𝑛𝑘(𝑦𝑖) − 𝑟𝑎𝑛𝑘(�̅�))
𝑛
𝑖=1

√∑ (𝑟𝑎𝑛𝑘(𝑥𝑖) − 𝑟𝑎𝑛𝑘(�̅�))2
𝑛
𝑖=1 √∑ (𝑟𝑎𝑛𝑘(𝑦𝑖) − 𝑟𝑎𝑛𝑘(�̅�))2

𝑛
𝑖=1

 

 

Where the rank of a variable refers to the ordinal position of its values, rather than their 

numerical values. For example: 

𝑥 = {1, 2, 5, 20, 18, 36} 

𝑟𝑎𝑛𝑘(𝑥) = {1, 2, 3, 5, 4, 6} 

 

Similar to the Pearson correlation, a perfect positive rank correlation yields a result of +1, 

a perfect negative rank correlation yields a result of -1, and a correlation of 0 indicates no 

relationship between the rankings of the variables. A Spearman correlation is useful here 

as it does not assume an underlying linear relationship between the variables. It is also 

more robust to outliers (extreme values) as it only uses the rankings of the collected 

samples.  

 

3.4 Predictive Algorithms 

3.4.1 General Overview 

Predictive algorithms (or predictive models) are models that use pre-existing data to make 

predictions about new data. In reality, there are several names for tools that perform these 
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tasks ranging from machine learning, statistical learning, predictive analytics, and several 

more. The phrase predictive algorithms will be used for this thesis. 

Defined this way, predictive algorithms are a type of supervised learning, which means 

that they require input data consisting of both a set of input variables and an associated 

output variable (or labelled data). This is in contrast to unsupervised learning algorithms 

which require only the set of input variables, but no associated output variable (unlabelled 

data). 

 

Supervised learning algorithms are further specified based on the type of output variable 

they predict. Two more commonly predicted outputs are categories and numbers. 

Algorithms that predict a category are called classification algorithms, whereas algorithms 

that predict a number are called regression algorithms. The focus of predictive algorithms 

in this thesis are regression algorithms. 

 

3.4.2 The Predictive Algorithm Process 

Feature Selection 

Feature selection (along with other data preprocessing) is an important step in the 

predictive algorithm process. This step involves choosing the input variables to be used as 

predictors for the models. One common approach to feature selection is to evaluate 

candidate input variables based on their correlation with the output variable of interest, 

where only the input variables above some threshold minimum correlation are then 

included as predictors for the model. Model performance is often best when only the most 

strongly correlated predictors are used as input to the model. 
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Scaling of Input Data 

Scaling of input data is critically important to the performance of some predictive 

algorithms and is often required to ensure that different input features have equal 

importance to the output despite potentially large differences in range between inputs. 

Typically, each input feature is scaled by removing the mean and dividing by the standard 

deviation: 

 

𝑥𝑖
𝑠𝑐𝑎𝑙𝑒𝑑 =

(𝑥𝑖
𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 − �̅�𝑖)

𝜎𝑥𝑖
 

 

Where �̅�𝑖 is the mean value and 𝜎𝑥𝑖 is the standard deviation of a particular input feature, 

𝑥𝑖. This makes each input feature roughly Gaussian in appearance. 

 

Model Selection 

Initial model selection is done based on the type of data (labelled or unlabelled) as well as 

the problem to be solved (regression, classification, etc.). A large number of models satisfy 

these criteria however, and it is useful to narrow down the list further in order to identify a 

few candidate algorithms more appropriate for our problem. 

 

When considering the feasibility of an algorithm for a particular problem, there are a few 

common input data considerations: The number of data points available (or number of 

samples), the number of variables for each sample (or input features), and the degree of 

noise in the data. The number of samples and features, in particular, are often known. The 

amount of noise in the input data may be more challenging to estimate. 
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These data descriptors can be used to gauge a suitable model for a given problem based on 

the model’s complexity. Model complexity is essentially the number of degrees of freedom 

available to the model. A more complex model has a larger number of degrees of freedom, 

whereas a less complex model has a smaller number of degrees of freedom. The optimal 

model is one that has enough complexity to capture the underlying signal in the data, but 

not so much complexity that it makes predictions based on noise in the data. A complex 

algorithm is therefore more likely suitable to a dataset consisting of a large number of 

samples and/or a small number of features, whereas a less complex algorithm is more likely 

suitable to a dataset consisting of a small number of samples and/or a large number of 

features. 

 

Model complexity and selection is intimately related to a problem called the “Bias-

Variance Trade-Off” [8], which essentially stems from the fact that the input data is 

stochastic and therefore algorithm training is done in a way that is not necessarily 

generalizable to future data. While this is a general concept for any loss function [14], there 

is a well-known prediction error decomposition for a mean square loss function: 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = 𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 + 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒⏟            
𝑅𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟

 

 

Bias is the prediction error introduced due to the mean prediction value of the model being 

different from the ideal prediction value. Variance is the error introduced due to the used 

prediction value being different from the mean prediction value. Irreducible error is the 
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error introduced due to the fundamental randomness in the input data. More specifically, 

given a particular set of inputs x associated with an output y, an ideal model f(x) which 

predicts the output y imperfectly due to some intrinsic noise, and an estimate of the ideal 

model 𝑓(𝑥), the bias, variance, and irreducible error can be broken down as follows: 

 

𝑦 = 𝑓(𝑥) + 𝜖 

𝐵𝑖𝑎𝑠 = 𝐸[𝑓(𝑥)] − 𝑓(𝑥) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐸 [𝑓(𝑥) − 𝐸[𝑓(𝑥)]]
2

 

𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜖) 

 

Generally, a model with more complexity (degrees of freedom) has a lower bias error, but 

a higher variance error. It is able to capture more accurate information on average, but is 

subject to sampling variability. Conversely, a model with less complexity generally has a 

higher bias error, but a lower variance error. It captures less information on average, but is 

also more robust to sampling variability. 

 

Training and Cross-Validation 

As explained in Hastie et al. [8] , training an algorithm and validating its performance is 

typically done by dividing the whole available dataset into either two or three subsets. 

Three data sets are ideal: A training dataset to select/update the algorithm parameters, a 

validation dataset to calculate prediction error for model selection/parameter tuning, and 

test dataset as a final check that the model performs well. However, the data is often divided 

into only two datasets, the training dataset and the validation dataset when data is sparse. 
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Evaluating algorithm performance on an independent dataset is important because 

algorithm performance can become over-estimated if it is validated on the same dataset it 

was trained on. This provides a more accurate indication of the algorithm’s generalizability 

to making predictions on future data. 

 

Leave-One-Out Cross Validation (LOO-CV) [8] is type of cross-validation that is 

important in this thesis work. This is a commonly used technique to evaluate algorithm 

performance when data is limited. It uses all but one data point for training the algorithm. 

The single remaining data point is used to validate the algorithm’s performance. This 

process is repeated for all permutations of training and validation data splits, providing an 

exhaustive measure of the algorithm’s performance. 

 

LOO-CV estimate of prediction error for a model f, is calculated as the mean value of the 

validation error, L, on each of the n individual permutations: 

 

𝐶𝑉(𝑓) =
1

𝑛
∑𝐿(𝑦𝑖, 𝑓

∗(𝑥𝑖))

𝑛

𝑖=1

 

 

Where f* is the model f trained without the ith training data point. The validation error, L, 

on each of the individual permutations is usually calculated using either the mean absolute 

error (MAE) or the mean squared error (MSE): 

 

𝑀𝐴𝐸: 𝐿(𝑦𝑖, 𝑓
∗(𝑥𝑖)) = |𝑦𝑖 − 𝑓

∗(𝑥𝑖)| 
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𝑀𝑆𝐸: 𝐿(𝑦𝑖, 𝑓
∗(𝑥𝑖)) = (𝑦𝑖 − 𝑓

∗(𝑥𝑖))
2
  

 

Parameter Tuning 

Several of the algorithms used in this thesis are adaptable through modification of different 

tuneable parameters called hyperparameters – parameters used in an algorithm, but external 

to the data itself. Adjustment of these hyperparameters often modify the goal of algorithm 

training in order to improve the generalizability of the algorithm to future data. In this 

sense, parameter tuning is closely related to the Bias-Variance Trade-Off discussed 

previously. 

 

Parameter tuning is often performed using cross-validation as discussed previously, where 

the average validation error of an algorithm is estimated for different hyperparameter 

values. The optimal choice of hyperparameter is the one which yields the lowest average 

validation error, as this is an indicator of the generalizability of the parameter choice 

towards predictions on future collected data. 
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4 Methodology 

 

The methodology for this work was divided into four sections: 

1. The collection of patient intra-fraction motion data coupled with patient 

demographic/treatment data; 

2. The pre-processing and analysis of this data; 

3. The investigation into candidate predictive algorithms suitable for predicting a patient’s 

intra-fraction motion based on their patient-specific factors (PSFs); 

4. The generation of a personalized PTV margin. 

 

4.1 Data Collection 

Demographic data, motion data, and other relevant treatment data was collected for 21 

prostate cancer patients to be treated with 74Gy to 78Gy over either standard (37-39 

fractions) or hypo-fractionated (26-28 fractions) radiation therapy schedules. For 

organizational purposes, the collected data was broken down into two subgroups, time-

independent data and time-dependent data. Time-independent data was defined as data that 

remains constant for a patient over an entire course of radiation therapy, whereas time-

dependent data was defined as data that varies on a fraction-to-fraction basis for each 

patient. 
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4.1.1 Time Independent Data 

Time-independent data was defined as data that remains constant over an entire course of 

radiation therapy. This included data relevant to clinical decision making (clinical data), 

demographic data, and other data that does not change on a fraction-to-fraction basis (other 

time-independent data). 

 

Clinical data included factors commonly used for staging prostate cancer, or recorded 

during the staging of prostate cancer. These clinical factors were PSA score, primary 

Gleason score, secondary Gleason score, total Gleason score, number of positive cores, 

total number of cores sampled, and cancer staging. 

 

Demographic data included any patient descriptors that could be collected during physician 

consults and deemed relevant to this study. The demographic factors were age, weight, 

height, body mass index (BMI), ECOG status, and whether the patient has any of diabetes, 

irritable bowel syndrome (IBS), chronic obstructive pulmonary disease (COPD), or 

implanted prosthetics (implants). 

 

Other time-independent data include any other relevant factors that did not change over the 

course of radiation therapy. There was only one extra factor recorded which was the 

number of implanted fiducial markers. 

 

A brief overview of all of these factors is included below along with any associated 

challenges in collection. 



 

 

31 

PSA Score 

PSA Score is short for Prostate Specific Antigen Score and is a measure of the 

concentration [ug/L] of a particular protein (antigen) produced by the prostate. PSA score 

is available for all prostate cancer patients and is measured through a blood test [15]. Scores 

typically range between 0 ug/L and around 10 ug/L, however in rare cases they can be 

much higher. [16] It is known that a higher concentration of this antigen or higher PSA 

score is indicative of an increased likelihood of prostate cancer. 

 

One of the challenges in using PSA score for this work is that (in order to assess the 

cancerous activity in the prostate) a patient often has many PSA scores taken leading up to 

their treatment. This makes it difficult to choose an identical score across all patients. This 

is further complicated by the fact that a number of patients undergo surgery and/or hormone 

therapy prior to receiving radiation therapy, which can decrease the PSA score 

dramatically. With these issues in mind, a decision was made in consultation with a 

physician to choose the most recent PSA score prior to the start of the course of radiation 

therapy. Since the information we are searching for is intra-fraction motion, it is the score 

most likely to be correlated with motion. 

 

Gleason Score 

Gleason score is a measure of the pathology of the prostate tissue. Two scores are typically 

assigned by a pathologist following prostate biopsy, a primary Gleason score and a 

secondary Gleason score. Primary Gleason score is the score assigned to the most common 

class of prostate cancer cells seen in biopsied tissue. Secondary Gleason score is the score 
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assigned to the second most common class of prostate cancer cells. Both primary and 

secondary Gleason scores range from 1 to 5, with 1 being the least pathological and 5 being 

the most pathological. The sum of these two Gleason scores provides another metric called 

the total Gleason score. [17] 

 

Number of Cores Biopsied and Number of Positive Cores 

The number of cores biopsied is the number of prostate tissue sample biopsies taken for 

the Gleason score analysis. Typically, 10-12 biopsy samples are taken, although there is 

variation to optimize cancer detection sensitivity vs biopsy side-effects [18] . The number 

of positive cores is the number of biopsied cores that return a positive test result for cancer. 

 

Cancer Staging 

Cancer staging is the stage assigned to the patient’s prostate cancer. Staging is done by a 

physician and classifies the extent of the cancer. Prostate cancer staging is typically done 

with three qualities in mind: The extent of the tumour (T) volume, the involvement of the 

lymph nodes (N), and whether the cancer is metastatic (M). This is called the TNM staging. 

[19] 

 

While staging was recorded for each patient, it was not included in the work due to the 

specificity of the staging coupled with the low number of patients. In particular, there were 

11 unique stages in the group of 21 patients. 
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Age 

The age of each patient was recorded. Prostate cancer is much more common in older men. 

Men over 50 years old are at highest risk with most men being diagnosed over age 65. [20] 

 

Height, Weight, and BMI 

The height and weight were recorded for all patients. The average adult male in Canada 

has a height and weight of around 175cm and 84kg, respectively. [21] The height and 

weight values were also used to calculate the BMI using the accepted definition [22]: 

 

𝐵𝑀𝐼 = 𝑤𝑒𝑖𝑔ℎ𝑡/ℎ𝑒𝑖𝑔ℎ𝑡2 

 

BMI was a factor of particular interest in the study as previous research has suggested a 

correlation between it and prostate intra-fraction motion [23]. 

 

Number of Fiducials 

This is the number of fiducial markers implanted into the prostate. Generally the 

recommended minimum number of seeds is 3, although more may be inserted if fiducial 

loss or migration is suspected [24]. 

 

ECOG Status 

ECOG status is an all-encompassing measure of the impact of disease (and treatment) on 

the daily life of a patient. The scale ranges from zero to five, where a score of zero means 

the patient experiences no impact on their daily life and a score of five means patient is 
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dead. In between scores provide indication into how much assistance patients require to 

perform routine tasks [25]. 

 

Diabetes 

Diabetes is a condition characterized by high blood glucose levels due to inadequate insulin 

production by the pancreas. Permanent forms of diabetes are classified as either Type 1, 

where the patient’s insulin production has been totally ceased due to damage from their 

own immune system, or Type 2, where inadequate amounts of insulin are produced or used 

due to other reasons. The majority of cases are type 2, representing about 85% to 95% of 

cases in developed countries. At the biochemical level, unregulated changes in blood 

glucose levels cause changes in the amount of water drawn into and out of cells. It is 

reasonable to consider that this swelling or shrinkage of tissue may affect the motion of the 

prostate to some degree.  [26,27] 

 

Diabetes was treated as a Boolean quantity. Presence of any diabetes, whether type 1 or 

type 2 was considered a ‘yes’ for diabetes. 

 

IBS 

IBS is the most commonly diagnosed gastrointestinal condition, affecting 9% - 23% of the 

world’s population. It is characterized by abdominal pain, straining, urgency, and bloating, 

all of which may relate to change in typical prostate motion. IBS may also be associated 

with changes in peristalsis – the involuntary gut contractions that move food through the 

digestive track – which may affect prostate motion.  [28,29,30] 
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IBS was treated as a Boolean. Presence of IBS was considered a ‘yes’ for IBS. 

 

COPD 

Chronic Obstructive Pulmonary Disease (COPD) is a common disease accounting for 

approximately 5% of deaths worldwide in 2015. It is characterized by airflow limitations 

to the lungs and presents with symptoms such as laboured breathing and chronic cough 

[31]. These symptoms may be associated with increased prostate motion during treatment 

due to patient discomfort and/or motion. 

 

COPD was treated as a Boolean. Presence of COPD was considered a ‘yes’ for COPD. 

 

Implants 

Implants refer to whether a patient had prosthetic replacements. This was recorded as a 

Boolean, however zero patients ultimately had implants so this has not been consequential. 

 

Race 

Race was initially planned for inclusion in the study, as there are known differences in 

prostate cancer incidence between race [32], but ultimately wasn’t recorded for any of the 

patients involved and was therefore not used. 
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4.1.2 Time Dependent Data 

Time dependent data includes motion data collected at each fraction, along with data about 

the presence of rectal gas, and fraction timestamp information. 

 

Prostate motion data was collected through the detection of gold fiducial marker motion. 

Each patient had 3 gold fiducial markers inserted into their prostate prior to their treatment 

planning to act as a surrogate for prostate motion. These fiducial markers have a higher 

density and higher atomic number compared to tissue and, as a result, are easily detectable 

in tissue using kV imaging. Patients were imaged using either orthogonal paired kV images 

or cone beam CT. 

 

The imaging was performed immediately prior to treatment and again immediately after 

treatment. Prior to each fraction, imaging was used to position the patient’s prostate relative 

to the prostate position at time of CT simulation by fiducial marker matching. Fiducial 

marker matching is an automated process which detects the high contrast fiducial markers 

in the images and aligns them with their position in the digitally reconstructed radiographs 

(DRR) produced from the simulation CT. This provides a resultant necessary couch shift. 

 

The couch shift was calculated using two methods. The first method was to align the center-

of-mass (COM) position of the fiducial markers on the day of treatment with the simulation 

CT COM position, such that the relative distance between the fiducial markers is 

unchanged. The resultant couch shift was therefore calculated as the difference between 

the two COM positions. The second method was to match the position of each individual 
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fiducial marker independently. The resultant couch shift was then calculated as the average 

difference between the positons of the three fiducial markers. This method was used if 

fiducial drift was suspected, causing the relative position between the fiducials to change. 

 

Ultimately, a couch shift was calculated for both the 3D case and the 6D case, and both 

were recorded as an indicator of inter-fraction motion. However, only the 3D couch shift 

was used to actually shift the couch for all the patients. The result of the 3D couch shift 

was that inter-fraction motion of the prostate was effectively eliminated, however inter-

fraction rotational errors remained. 

 

After each fraction, imaging was used to again match the patient’s prostate to the treatment 

planning position of the couch. Couch shifts were calculated for both the 3D case and the 

6D case, and again both were recorded. The difference between the post-treatment position 

of the prostate and the pre-treatment position of the fiducial markers is an indicator of intra-

fraction motion that occurred during treatment. 

 

In addition to motion information, the presence of gas prior to treatment and after treatment 

was recorded every fraction as well as a number of time stamps during each fraction. 

Presence of gas was recorded as a Boolean quantity; the patient either had or did not have 

gas. This was evaluated through visual inspection of the pre-treatment and post-treatment 

images, indicated by air gaps in the rectum area. 
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Time stamps were also taken each fraction at the time of first beam, at the time of the last 

beam, and the total time the patient’s file was open. These times were recorded to 

investigate the relationship between prostate motion and treatment times. 

 

4.2 Data Analysis 

Broadly, data analysis is the process through which one searches for knowledge by 

investigating a collection of data. This process involves many steps, but can be grouped 

into three more general steps: Preprocessing of the data, extracting knowledge from the 

data, and evaluating and presenting the findings. All of these steps will be discussed in the 

following sections, but firstly, a tool to perform these tasks had to be chosen. 

4.2.1 Overview of the software environment 

The software used for data analysis purposes was the Pandas module within Python 

[https://www.python.org/]. Python is a free, open source programming language, and 

Pandas is a data analysis library available for use within the Python environment 

[http://pandas.pydata.org/]. It is built using several tools from pre-existing Python libraries, 

most notably Numpy [http://www.numpy.org/], the standard numerical library in Python, 

and Scipy [https://www.scipy.org/], the standard scientific library in Python. 

4.2.2 Data Preprocessing 

Data preprocessing is the first – and arguably the most important – step in the data analysis 

process as it lays the foundation for the rest of the analysis. This process can be thought of 

as maximizing the signal-to-noise within the collected data. It addresses missing or 

otherwise anomalous or inconsistent data, pooling data from multiple sources, choosing 
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which elements of the collected data are most important, and structuring the data in a more 

useful way to extract information. Data was preprocessed using all of these mentioned 

elements in at least some capacity. 

 

The time-independent and time-dependent data was the input data to the pre-processing 

phase. The first task was to organize this data in a manner so that it could be read-in and 

analyzed consistently for all patients. This was done for both the demographic and motion 

data files and was completed by creating .csv file templates for the motion and 

demographic input files (see appendix). The process of taking the two data files, checking 

for problems such as units or missing information, and putting them into a template csv file 

takes roughly 2-3 min per patient, depending on the non-uniformity of a given patient’s 

data. 

 

Once data was imported into the program, additional modifications were required. Patient 

files with missing data entries (“n/a”) were converted to nan (“not-a-number”) and were 

consequently omitted from statistical analysis. Patient files with inconsistent data entries 

(e.g. “no”, “N”, “n”, etc.) were made to be homogeneous. Data-type problems (e.g. floating 

point vs. string) caused by the presence of missing or inconsistent data were also corrected. 

Any additional result-specific data manipulations are included in the sections below. 
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4.2.3 Searching for Knowledge 

Identification of Patient Specific Factors 

The inputted data was investigated on several fronts. The first was to identify if and what 

PSFs correlated with intra-fraction motion. This analysis is useful to identify important 

features (PSFs) to use as input to predictive algorithms. 

 

An additional pre-processing step was performed for this section. The intra-fraction motion 

data (and other time dependent data such as time stamps and gas) from each fraction was 

collapsed into summary statistics such as the mean, standard deviation, min and max. This 

data transformation was necessary to compensate for the fact that the motion measured by 

the fiducial markers are only a snapshot into the true motion of the prostate. By looking at 

those motion snapshots over the course of multiple fractions, one can have more confidence 

that the fiducial motion is an accurate representation of the actual prostate motion. 

 

Two correlation tests were used for this analysis, a Pearson (r) correlation and a Spearman 

(ρ) correlation. 

 

𝑟 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)2
𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)2

𝑛
𝑖=1

 

 

𝜌 =
∑ (𝑟𝑎𝑛𝑘(𝑥𝑖) − 𝑟𝑎𝑛𝑘(�̅�))(𝑟𝑎𝑛𝑘(𝑦𝑖) − 𝑟𝑎𝑛𝑘(�̅�))
𝑛
𝑖=1

√∑ (𝑟𝑎𝑛𝑘(𝑥𝑖) − 𝑟𝑎𝑛𝑘(�̅�))2
𝑛
𝑖=1 √∑ (𝑟𝑎𝑛𝑘(𝑦𝑖) − 𝑟𝑎𝑛𝑘(�̅�))2

𝑛
𝑖=1

 

 



 

 

41 

The relationship of interest in this section was between PSFs and any intra-fraction motion, 

intra-fraction rotation, or inter-fraction rotation. Of particular interest was the relationship 

between BMI and intra-fraction motion as previous studies suggest a potential relationship 

between them. [23] 

 

Trends in Time Dependent Data 

A second method of searching for information in the data is by looking at the time 

dependent data or the data recorded on a fraction-to-fraction basis. The time dependent 

data includes information about fiducial motion and rotations along all directions and axes, 

as well as time stamps information and the presence of gas. In particular, previous research 

has shown a relationship between fraction duration and the amount of intra-fraction motion 

during treatment [33]. This time-dependent analysis is also of special note because it 

contains a reasonably large sample size, in contrast to what is available in other sections. 

The 21 patients used for this work account for a combined 678 fractions worth of 

information. 

 

These 678 fractions were concatenated into one structure, called the ‘population dataset’, 

and then Pearson and Spearman correlation tests were performed to estimate the degree of 

correlation between any of the time-dependent parameters. 

 

An additional preprocessing steps was used in this section. A ‘fraction number’ column 

was added to each patient to investigate trends in the population that occur over a course 

of radiation therapy. 
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Rectal Distension 

The presence or change in the presence of pre-treatment and/or post-treatment gas was 

investigated for effect on motion and rotation, as previous work has shown a link between 

gas and prostate motion [34]. Gas was recorded as a Boolean quantity before and after 

treatment fraction based on the presence of air gaps in the rectum before and after 

treatment. The population dataset was grouped based on pre-treatment and post-treatment 

gas permutation as described in Table 1: 

 

Acronym Pre-treatment Gas Present Post-treatment Gas Present 

N No - 

Y Yes - 

NN No No 

NY No Yes 

YN Yes No 

YY Yes Yes 

Table 1: Gas permutation acronyms. 

 

For each gas permutation, the mean and standard deviation of intra-fraction motion, intra-

fraction rotation, and inter-fraction rotation were calculated and compared. 

 

Population-Based Motion Statistics 

Population-based statistics were calculated using the population dataset. These include the 

mean and the standard deviation of intra-fraction motions, intra-fraction rotations, and 

inter-fraction rotations. The directionality of these motions and rotations were also 

explored by comparing the mean and the standard deviations of opposite directions along 

the same axis. For example, along the vertical axis, the prostate may move anteriorly to a 
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greater extent than it moves posteriorly. The directionality statistics were calculated by 

pooling the ‘positive’ direction fractions for a particular motion/rotation and comparing the 

mean and standard deviation to the ‘negative’ direction fractions for that motion/rotation. 

 

4.3 Predictive Algorithms for Intra-Fraction Motion 

4.3.1 Overview of Software Environment 

The software used for this component of the project was the Scikit-learn module 

[http://scikit-learn.org/stable/] within Python. Scikit-learn is a free machine learning 

package available to download for use within the Python environment. 

4.3.2 Predictive Algorithm Selection 

Several regression algorithms were investigated for potential use in predicting a patient’s 

intra-fraction motion based on their PSFs. These algorithms were initially chosen to be 

tested based on the problem to be solved (regression problem) and the properties of the 

available (labelled data, small number of samples, small number of features). A brief 

introduction into the algorithms selected for evaluation is included below. More detailed 

algorithm descriptions can be found in various textbooks [8,35] . 

 

Linear – The linear model is a standard linear regression algorithm. It predicts an output 

value f(X) given a set of input values X: 

 

𝑓(𝑋) = 𝛽0 + 𝑋𝛽 
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Here 𝛽0 is the intercept, f(X) is the predicted intra-fraction motion along a single direction, 

and X is the set of input features, which are the PSFs: 

 

𝑓(𝑋) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑡𝑟𝑎𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑡𝑖𝑜𝑛 

 

𝑋 = [

𝑃𝑆𝐴
𝐵𝑀𝐼
…
𝑒𝑡𝑐.

] 

 

The coefficients 𝛽 are the weights associated with each PSF: 

 

β = [

𝑃𝑆𝐴 𝐶𝑜𝑒𝑓
𝐵𝑀𝐼 𝐶𝑜𝑒𝑓

…
𝑒𝑡𝑐.

] 

 

The coefficients are an indication of the importance of a particular PSF to the predicted 

intra-fraction motion. These coefficients are calculated by minimizing a residual sum of 

square (RSS) objective function: 

 

𝑅𝑆𝑆(β) =∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑁

𝑖

 

 

Here 𝑦𝑖 is the true intra-fraction motion for the ith sample and 𝑓(𝑥𝑖) is the predicted intra-

fraction motion for the ith sample. 
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Compared to the other linear algorithms, the linear model is the most sensitive to fine-

detail in the input data, but it is also the most susceptible to noise. 

 

Ridge – The ridge model is a regularized linear regression algorithm. Similar to the linear 

model, it predicts an output value f(X) given a set of input values X: 

 

𝑓(𝑋) = 𝛽0 + 𝑋𝛽 

 

Where f(X), X, β0, and β are defined identically as in the linear case. The ridge model 

differs from the linear model in the way the coefficients are determined. The ridge model 

has an additional term in the RSS objective function that penalizes the size of the 

coefficients associated with the input features: 

 

𝑅𝑆𝑆(𝛽) =∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑁

𝑖

+ 𝛼‖𝛽‖2 

 

‖𝛽‖2 = √𝑃𝑆𝐴2 + 𝐵𝑀𝐼2+. . . 𝑒𝑡𝑐 

 

Here 𝑦𝑖 is again the true intra-fraction motion for the ith sample and 𝑓(𝑥𝑖) is the predicted 

intra-fraction motion for the ith sample. 

 

The result of the additional term in the objective function is that the coefficients are smaller. 

As a result, the predictions are therefore more robust to noise because the variance in any 
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one PSF input has a smaller effect on the predicted motion output. The parameter α controls 

the trade-off between the two components of the objective function, and is chosen by cross-

validation [8]. This is discussed in the background section and later in the discussion 

section, but by default α = 1.0. 

 

LASSO – The LASSO is a regularized linear regression algorithm nearly identical to the 

ridge. The only difference between the two is that the LASSO penalizes the size of 

coefficients based on the sum of absolute values instead of the sum of squares: 

 

𝑅𝑆𝑆(𝛽) =∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑁

𝑖

+ 𝛼‖𝛽‖1 

 

‖𝛽‖1 = |𝑃𝑆𝐴| + |𝐵𝑀𝐼| + …  𝑒𝑡𝑐 

 

The LASSO penalty term is more severe compared to the ridge model. The majority of 

coefficients are often zero. LASSO has use in feature selection for this reason, as it assigns 

non-zero coefficients to only the most valuable features. However, it does not deal with 

co-linearity between inputs well and will often choose one coefficient to be non-zero and 

set the rest to zero. 

 

The parameter α again controls the trade-off between the two components of the objective 

function, and is chosen by cross-validation. This is discussed in the background section 

and later in the discussion section, but by default α = 1.0. 



 

 

47 

Linear Support Vector Regression – The linear support vector regression (SVR) algorithm 

attempts to fit a linear model to training data similar to the previous algorithms: 

 

𝑓(𝑋) = 𝛽0 + 𝑋𝛽 

 

Where f(X), X, β0, and β are defined identically as in the linear case. The coefficients are 

determined differently, however, and are based on two conditions: 

1. The coefficients are as small as possible (making the function as robust to noise as 

possible); 

2. Training data points that differ from their predicted value by less than some user-

specified value ε contribute no cost to the objective function (OF). 

 

This is a constrained optimization problem. The OF is minimized: 

 

𝑂𝐹 =
1

2
 ‖𝛽‖2 + 𝐶 ∑(α𝑖 + 𝛼𝑖

∗)

𝑖

 

 

Subject to constraints: 

1) 𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜖 + 𝛼𝑖  

2) 𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜖 + 𝛼𝑖
∗ 

3) 𝛼𝑖, 𝛼𝑖
∗ ≥ 0 
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αi and αi
* are the cost of using a model 𝑓(𝑋) that allows training point deviation greater 

than the user-specified 𝜖 tolerance. Here, 𝜖 was set to be 0.5mm, based on the resolution 

of a margin assigned to a CTV in the Eclipse treatment planning system. αi is therefore an 

intra-fraction motion deviation greater than 0.5mm in the case where the true intra-fraction 

motion is greater than the predicted intra-fraction motion. Whereas αi
* is an intra-fraction 

motion deviation greater than ε in the case where the true intra-fraction motion is less than 

the predicted intra-fraction motion. 

 

The parameter C determines the relative importance between the function, f(X), being 

robust and the degree to which training data point deviations greater than ε are allowed. 

This is chosen with cross-validation as explained in the background section. Mathematical 

details including the solution to the constrained optimization can be found elsewhere 

[8,35,36]. 

 

k – Nearest Neighbour (kNN) 

The kNN regression model is a simple model that works by association. It examines the 

distance (e.g. Euclidean distance) in parameter space between a test point and its ‘k’ nearest 

neighbours. The mean of the output values associated with those k nearest neighbours is 

used to predict an output value for the test point. 

 

By default, k=5 nearest neighbours was used. A test patient’s intra-fraction motion was 

therefore predicted by determining which k=5 existing patients are most similar to the test 

patient, based on the PSFs. The mean intra-fraction of the k=5 most similar patients was 
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then used as the predicted intra-fraction motion for the test patient. Because nearest 

neighbour evaluation is performed using a distance metric, it is crucial that the input data 

is scaled to account for different units/scales for each PSF. 

 

Multi-Layer Perceptron (MLP) 

The MLP is a regression tool based on neural networks. It receives an input vector of 

parameters which are fed through a single hidden layer of hidden neurons into an activation 

function and added linearly to create a prediction for the output. The difference between 

the output prediction and the true output is then fed back into the network to update the 

weights in the algorithm using backpropagation. A sigmoid function activation function 

was used making this identical to an artificial neural network (ANN). 

 

This is a currently popular type of algorithm and is the foundation of ‘deep learning’. It 

was included to provide contrast with the other models used here. As it has many more 

parameters than the other models, it requires much more data before it begins to work 

effectively. By default, 1 hidden layer containing 100 hidden neurons was used, which is 

not an unreasonable starting point [8], especially when the purpose is to explore a model 

that behaves differently from the others used. In practice, 1 hidden layer is sufficient and 

the number of hidden neuron are typically selected using cross-validation. 

 

4.3.3 Training and Validation of Algorithm Performance 

When training an algorithm, one typically leaves out a number of data points for validation 

purposes. This is done because algorithm performance becomes over-estimated if it is 
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validated using the same dataset it was trained on. In this work, the training and validation 

of algorithm performance was done using Leave-One-Out Cross Validation (LOO-CV), is 

a commonly used technique when data is limited. For more detail refer to the statistical 

background section. 

 

The principle performance metric used to report the algorithm’s performance was mean 

absolute error (MAE). This is one of two commonly used metrics; the other is the mean 

squared error (MSE). The MAE was chosen primarily for ease of error interpretation as its 

units are physically more meaningful. 

 

4.3.4 Benchmarking of Predictive Algorithms 

To estimate the performance of these algorithms on a similar dataset, a model of intra-

fraction motion was created. The model simulated the fiducial motion based on clinically 

relevant PSFs. The PSFs were randomly sampled and then fed into the predictive 

algorithms. The predicted output motion was then compared to the actual simulated output 

motion. 

 

Generating Motion Data 

Simulated data was generated using a range of PSF values. Those PSFs modulated in the 

simulation include: PSA score, primary Gleason score, secondary Gleason score, total 

Gleason score, total cores biopsied, number of positive cores, staging, age, weight, height, 

BMI, diabetes, IBS, COPD, Implants, and ECOG status. From the algorithms’ standpoint, 

this represents several float inputs, several Boolean inputs, one categorical input (stage), 
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and two inputs dependent on other input values (total Gleason and BMI). For simplicity, 

each of the PSFs were randomly sampled from a uniform distribution based on a clinically 

relevant range. For example, height was sampled between 150 cm and 200 cm, whereas 

primary Gleason was sampled between 1 and 5, inclusive. The range of parameters used 

for all parameters are included in Table 2: 

 

PSF Range Sampled (inclusive) 

PSA Score 0 – 15 

Primary Gleason Score (pGleason) 1 – 5 

Secondary Gleason Score (sGleason) 1 – 5 

Total Gleason Score pGleason + sGleason 

Total Cores Sampled 6 – 25 

Total Cores Positive 0 – Total Cores Sampled 

ECOG Status 1 – 5 

Stage 1 – 4 

Age 40 – 95 

Weight [kg] 65 – 125 

Height [cm] 150 – 200 

BMI [kg/m2] Weight / (Height/100)2 

Diabetes Boolean 

IBS Boolean 

COPD Boolean 

Implants Boolean 

Table 2: Sampling range for each PSF 

 

 

In this model, each sampled PSF was made to be directly correlated with prostate motion. 

Most of the sampled PSFs were multiplied by a coefficient weight and that contribution 
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was added to the total motion. The coefficient weights were pre-determined and chosen 

such that the output motion was clinically meaningful. The Boolean PSFs contributed to 

motion depending on the result of the Boolean. Others contributed to motion if their 

sampled value was above some threshold tolerance value. 

 

After determining the extent of the motion due to PSFs, noise was added to the motion. 

The noise was of the order of radiation therapist inter- and intra-fraction marker matching 

noise or approximately 0.85mm [37]. This was sampled from a Gaussian distribution with 

mean of zero and a standard deviation of 0.85mm. In reality, this value represents a 

minimum noise floor as the true noise is likely larger due to uncorrelated PSFs. The impact 

of noise on the performance of algorithms is examined in the results section. 

 

A final step in creating this motion data was outlier data rejection and re-sampling. This 

was necessitated by BMI in particular. BMI was calculated from the height and weight data 

as described earlier, however by simply sampling from height and weight alone using a 

uniform distribution, unrealistic values of BMI are possible. To counteract this, BMI values 

exceeding 50 and no less than 10 were rejected and re-sampled. 

 

The total extent of motion was restricted to between 0.01mm and 100mm. The lower limit 

was to ensure the evaluation of algorithm performance was not decreased by small motion 

precision errors. The upper limit is to ensure realistic motion; one would not expect the 

prostate to leave the patient’s body during treatment for example. 
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Evaluation of Algorithms 

Simulations that evaluated the algorithms ranged from 20, 50, and 200 simulated patients. 

Several common algorithms were tested using mostly default tuning parameters to identify 

candidate algorithms. The performance of each algorithm was evaluated using the distance 

between the predicted and actual motion (referred to as prediction error). The prediction 

error was plotted for each patient along an axis when evaluating the algorithm’s 

performance. The mean, standard deviation, minimum, maximum, and mean absolute error 

(MAE) of the prediction error were also calculated. MAE in particular is a commonly used 

performance metric and used as a principle statistic. 

 

As mentioned in the background section, scaling of data is critically important to the 

performance of some predictive algorithms. Therefore, all input data was scaled by 

removing the mean and dividing by the standard deviation for each feature: 

 

𝑥𝑖
𝑠𝑐𝑎𝑙𝑒𝑑 =

(𝑥𝑖
𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 − �̅�𝑖)

𝜎𝑥𝑖
 

 

Where �̅�𝑖 is the mean value and 𝜎𝑥𝑖 is the standard deviation of a particular input feature, 

𝑥𝑖. 

 

As discussed in the background section, many of the algorithms are tuneable though the 

use of tuning parameters. This tuning is done based on the properties of the dataset in hand. 

All the algorithms were evaluated using default tuning parameters for the simulations. 
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Number of Patients Required 

Multiple simulations were performed to estimate the number of patients required to predict 

patient intra-fraction motion based on their unique PSFs. Simulations were done for 20, 

50, 100, 200, and 800 patients. Ten trials were run for each patient number to account for 

statistical fluctuations in algorithm performance caused by random sampling. The mean 

and standard deviation of the MAE for each trial was calculated for each patient number. 

This provides an estimate of the mean algorithm performance and the reproducibility of 

that performance for a given patient number. PSF sampling and motion generation was 

performed identically to that described in the prior section. 

 

Effect of noise in the data 

The largest uncertainty in this model was the amount of noise present in the simulated data. 

While noise estimates for the simulations were set to 0.85mm as described earlier, this 

represents a noise floor. The true noise in the data is likely greater due to errors in data 

collection and uncorrelated PSFs, for example. With this in mind, additional simulations 

were performed at different noise levels. 

 

Simulations were completed as described in the previous section under different levels of 

Gaussian noise. The performance of algorithms was evaluated for noise values of 0.0mm, 

0.4mm, 0.85mm, 1.5mm, 3.0mm, and 10.0mm, corresponding to the standard deviation of 

a Gaussian distribution, and three trials were performed for each noise value. PSF sampling 

and motion generation with new noise values was performed identically to that described 

in the motion generation section. 
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4.3.5 Applying Predictive Algorithms to Real Patient Data 

The predictive algorithms were applied to the actual patient data using a methodology 

similar to that used in the benchmarking of the algorithms. Intra-fraction motion data from 

21 patients along 3 directions were used for training and validation of the selected 

predictive algorithms. Each patient was associated with 16 PSFs, which were scaled and 

used as input to the machine learning algorithms. 

 

Leave-One-Out cross validation was used to train and evaluate algorithm performance. The 

performance of the algorithms on the actual patient data was evaluated identically to their 

performance on the simulated patient data. 

 

An important difference between real and simulated patient data is that real patient data 

often contains incomplete data. To address this, the missing fields were filled with the mean 

value of the particular PSF as shown in Table 3. Since the input data was scaled to remove 

the mean, this approach minimized the impact of the missing feature. 

 

 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 MEAN 

Raw PSF 4 Missing 6 5 Missing 5 

Cleaned PSF 4 5* 6 5 5* 5 

Table 3: Example of how incomplete data was filled for a PSF 
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4.4 Generating a Patient Specific Margin 

4.4.1 Population Based Margin 

The van Herk formula [6] was used to estimate a population-based PTV margin based on 

systematic and random errors in the radiation therapy process: 

 

𝑃𝑇𝑉 𝑀𝑎𝑟𝑔𝑖𝑛 = 2.5∑𝑝𝑜𝑝 + 0.7𝜎𝑝𝑜𝑝 

 

For detailed descriptions of these errors, refer to the radiation therapy background section 

or van Herk [6]. Numerical estimates for all these errors are included in Table 4. Note that 

inter-fraction motion errors were estimated to be 0.0mm because they were corrected for 

using image guidance. 

 

Error Source Vertical [mm] Longitudinal [mm] Lateral [mm] 

Systematic Error 1.4 1.6 1.0 

Target Delineation 0.7 1.3 0.7 

Setup 0.5 0.5 0.5 

Inter-fraction motion 0.0 0.0 0.0 

Intra-fraction motion 1.0 0.9 0.5 

Random Error 1.9 1.8 1.2 

Setup 0.9 0.9 0.9 

Inter-fraction motion 0.0 0.0 0.0 

Intra-fraction motion 1.7 1.5 0.8 

Table 4: Estimation of errors 
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4.4.2 Personalized Margin 

A variation on the van Herk formula was used to generate a personalized margin. In this 

approach the population-based random error due to motion was replaced by a personalized 

random error due to motion. This is reasonable given that the population-based random 

motion error is simply an average all the individual random motion errors. More explicitly: 

 

𝑃𝑇𝑉 𝑀𝑎𝑟𝑔𝑖𝑛 = 2.5∑𝑝𝑜𝑝 + 0.7𝜎𝑝𝑒𝑟𝑠 

 

Where: 

 

Σpop
2 = Σ𝑚

2 + Σ𝑠
2 + Σ𝑑

2  

 

And: 

 

𝜎𝑝𝑒𝑟𝑠
2 = 𝜎𝑚,𝑝𝑒𝑟𝑠

2 + 𝜎𝑠,𝑝𝑜𝑝
2  

 

Σ𝑚, Σ𝑠, 𝑎𝑛𝑑 Σ𝑑 are the systematic errors due to motion, set-up, and delineation. 

𝜎𝑠,𝑝𝑜𝑝 is a random set-up error which affects the entire population of patients. 

𝜎𝑚,𝑝𝑒𝑟𝑠 is a personalized random error due based on predicted intra-fraction motion using 

PSFs. 
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5 Results 

 

5.1 Data Analysis 

5.1.1 Patient Specific Factor Statistics 

PSFs were recorded for the 21 patients in this study. Table 5, Table 6, Table 7, and Table 

8 provide statistics on the PSFs used for analysis. 

Patient Specific Factor Sample

s 

Mean Standard Deviation Minimum Maximum 

PSA [ug/L] 21 4.6 5.6 0.1 15.3 

Primary Gleason 21 3.7 0.6 3 5 

Secondary Gleason 21 4.0 0.7 3 5 

Total Gleason 21 7.8 0.8 7 9 

Total Cores 21 11.0 4.6 3 22 

Positive Cores 21 7.1 3.5 1 12 

Age 21 74.3 5.9 59 86 

Height [cm] 21 171.6 10.3 139 185 

Weight [kg] 21 80.9 11.0 58.4 105.1 

BMI [kg/m2] 21 27.7 4.8 19.5 42.1 

Table 5: PSF statistics 

 

Number of Seeds 3 4 5 

Number of Patients 14 6 1 

Table 6: Number of implanted fiducial markers (seeds) patient distribution 

 

ECOG Status 0 1 2 3 4 5 Missing 

Number of Patients 9 7 1 0 0 0 4 

Table 7: ECOG status patient distribution 
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Patient Specific Factor Yes No 

Diabetes 4 17 

IBS 1 20 

COPD 2 19 

Table 8: Boolean PSF statistics 

 

5.1.2 Identification of Patient Specific Factors 

Pearson and Spearman correlation tests revealed potential PSFs from the sample of 21 

patients. Statistics investigated were a patient’s mean intra-fraction motion and the 

standard deviation of intra-fraction motion along all three coordinate axis (Longitudinal, 

Vertical, Lateral). The purpose of identifying the PSFs in this section is to determine the 

most critical parameters in predicting a patient’s intra-fraction motion. This process is done 

to reduce the dimensionality of the input data, which is an important step in improving 

predictive power and/or reducing the number of data points required for further work. Inter-

fraction and intra-fraction rotation of fiducial markers was also investigated for PSF 

correlations. Fiducial marker rotation information was captured using 6D marker match. 

 

Table 9 displays some of the Pearson and Spearman correlations between various PSFs and 

a patient’s mean 3D intra-fraction motion. Displayed PSFs were chosen based on having 

absolute value of either Pearson or Spearman correlation greater than 0.3. Large differences 

between a Pearson and Spearman correlation for any given parameter can often be 

attributed to the influence of outlier points.  
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Pearson and Spearman Correlation between PSFs and mean 3D intra-fraction motion 

Direction PSF Pearson Spearman 

Longitudinal (Sup-Inf) 

ECOG Status 0.38 0.51 

IBS -0.34 -0.33 

Weight -0.21 -0.36 

Vertical (Ant – Post) 
IBS 0.40 0.37 

ECOG Status -0.31 -0.29 

Lateral (Left – Right) 

BMI -0.44 -0.16 

Total Gleason -0.39 -0.44 

Diabetes -0.34 -0.28 

Secondary Gleason -0.28 -0.32 

Height 0.55 0.53 

Table 9: Pearson and Spearman correlations (>0.3) between mean 3D intra-fraction motion 

and PSFs 

Using the same criteria, Table 10 shows correlations between PSFs and a patient’s standard 

deviation of intra-fraction motion. 
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Pearson and Spearman Correlation between PSFs and std of 3D intra-fraction motion 

Direction PSF Pearson Spearman 

Longitudinal (Sup-Inf) 

PSA Score -0.41 -0.50 

Primary Gleason -0.38 -0.36 

COPD 0.24 0.27 

Secondary Gleason 0.28 0.31 

IBS 0.43 0.33 

Vertical (Ant – Post) 

PSA Score -0.38 -0.34 

Height 0.24 0.30 

Weight 0.30 0.21 

IBS 0.48 0.37 

Lateral (Left – Right) 
Weight -0.36 -0.17 

PSA Score 0.38 0.21 

Table 10: Pearson and Spearman correlations (>0.3) between the standard deviation of 3D 

intra-fraction motion and PSFs 

 

While the BCCA-VIC performs all couch shifts for prostate cancer treatment using only 

3D shifts, the marker matching software allows for a 6D shift to be calculated. The 6D shift 

allows for prostate rotation to be accounted for in addition to the standard couch shift. Table 

11 and Table 12 show the Pearson and Spearman correlations between the mean and 

standard deviation of intra-fraction rotations and the PSFs. The intra-fraction rotations 

were calculated as the difference between the post-image rotation and the pre-image 

rotation. 
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Pearson and Spearman Correlation between PSFs and mean 6D intra-fraction rotation 

Direction PSF Pearson Spearman 

Pitch 

Weight -0.09 -0.32 

Positive Cores -0.29 -0.32 

IBS -0.19 -0.30 

Primary Gleason 0.30 0.38 

Total Cores 0.33 0.27 

Total Gleason 0.13 0.30 

Roll 

Diabetes -0.46 -0.29 

Primary Gleason -0.31 -0.27 

IBS 0.32 0.34 

Total Gleason -0.30 -0.32 

PSA Score 0.25 0.35 

Yaw 

Age -0.40 -0.19 

Secondary Gleason -0.31 -0.15 

PSA Score 0.30 0.42 

Table 11: Pearson and Spearman correlation between mean 6D intra-fraction rotation and 

PSFs 
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Pearson and Spearman Correlation between PSFs and the std of 6D intra-fraction rotation 

Direction PSF Pearson Spearman 

Pitch 

PSA Score -0.30 -0.38 

Number of Fiducials -0.12 -0.41 

COPD -0.25 -0.41 

Roll 

ECOG Status -0.48 -0.50 

Number of Fiducials -0.36 -0.48 

Weight -0.34 -0.45 

BMI -0.33 -0.28 

PSA Score -0.31 -0.35 

Secondary Gleason 0.30 0.27 

Diabetes 0.50 0.37 

Total Cores -0.20 -0.55 

Yaw 

Weight -0.38 -0.28 

Positive Cores -0.28 -0.47 

Diabetes -0.25 -0.30 

PSA Score -0.26 -0.30 

ECOG Status 0.27 0.38 

BMI -0.27 -0.30 

Table 12: Pearson and Spearman correlation between the standard deviation of 6D intra-

fraction rotation and PSFs 

 

 

 

 

 

 



 

 

64 

Finally, the correlations between the mean and standard deviation of inter-fraction rotations 

and PSFs are presented in Table 13 and Table 14. The inter-fraction rotations are not 

corrected for prior to treatment and may therefore be important. 

 

Pearson and Spearman Correlation between PSFs and mean 6D inter-fraction rotation 

Direction PSF Pearson Spearman 

Pitch 

Primary Gleason -0.43 -0.39 

Total Gleason -0.42 -0.47 

Age 0.38 0.17 

COPD 0.24 0.31 

Roll 

BMI -0.55 -0.40 

Positive Cores -0.46 -0.52 

PSA Score -0.43 -0.32 

Number of Fiducials -0.32 -0.25 

Weight -0.31 -0.30 

Height 0.32 0.23 

Yaw 

Number of Fiducials -0.54 -0.58 

Total Cores -0.17 -0.42 

Height -0.14 -0.31 

Table 13: Pearson and Spearman correlation between mean 6D inter-fraction rotation and 

PSFs 
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Pearson and Spearman Correlation between PSFs and the std of 6D inter-fraction rotation 

Direction PSF Pearson Spearman 

Pitch 

Positive Cores -0.39 -0.28 

COPD -0.36 -0.47 

ECOG Status 0.32 0.48 

Diabetes -0.29 -0.34 

Primary Gleason 0.25 0.32 

Height 0.21 0.41 

Roll 

Number of Fiducials -0.38 -0.40 

Positive Cores -0.30 -0.33 

Diabetes 0.34 0.24 

Secondary Gleason 0.37 0.39 

Total Gleason 0.39 0.33 

PSA Scores -0.08 -0.43 

Total Cores -0.25 -0.40 

COPD -0.27 -0.38 

ECOG Status -0.19 -0.32 

Yaw 

Positive Cores -0.40 -0.46 

Total Cores -0.36 -0.17 

BMI -0.20 -0.43 

Diabetes -0.18 -0.40 

Secondary Gleason -0.07 -0.38 

ECOG Status 0.27 0.50 

Primary Gleason 0.20 0.52 

PSA Score 0.39 -0.01 

Table 14: Pearson and Spearman correlation between the standard deviation of 6D inter-

fraction rotation and PSFs 
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5.1.3 Time Dependent Data 

The time dependent data was defined as data that varies on a fraction-to-fraction basis for 

each patient. This includes motion and rotation data collected each fraction, along with 

data about the presence of gas, and fraction timestamp information. The only correlation 

of significance here was between longitudinal intra-fraction motion and vertical intra-

fraction motion (Table 15). These parameters are strongly correlated with each other, and 

may be due to pelvic tilt. 

 

Correlation between Time Dependent Parameters (3D) 

Time Dependent Parameter 1 

Tim 

Time Dependent Parameter 2 Pearson Spearm

an 
Vertical intra-fraction motion Longitudinal intra-fraction motion -0.74 -0.70 

Table 15: Correlation between vertical and longitudinal intra-fraction motion 

 

Also notable here is the lack of correlation between motion and time stamp information, as 

previous studies have suggested longer treatment times may be associated with increased 

intra-fraction motion [33,38,39]. 

 

The 6D fiducial marker rotations showed no meaningful correlations between time 

dependent parameters. 

5.1.4 Rectal Distention 

The mean intra-fraction motion is affected by changes in gas during treatment. A change 

in gas means either gas is not present prior to the fraction, but is present after the fraction 

(N-Y), or the vice-versa (Y-N). This is explained in detail in the methodology section. 
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Fractions where a change in gas occurred represent a very small proportion of the total 

number of fractions (~ 4%). 

 

Table 16 and Table 17 show the effect intra-fractional gas change on the mean and standard 

deviation of intra-fraction motion, respectively. 

 

Mean Intra-fraction Motion 

 N-N N-Y Y-N Y-Y 

Fractions 502 26 1 122 

Lng [mm] 0.27 -0.91 -4.9 0.12 

Vrt [mm] -0.77 0.21 4.4 -0.63 

Lat [mm] 0.08 0.13 0.2 0.05 

Table 16: Effect of gas on mean intra-fraction 3D motion 

 

Standard Deviation of Intra-fraction Motion 

 N-N N-Y Y-N Y-Y 

Fractions 502 26 1 122 

Lng [mm] 1.66 1.78 N/A 1.79 

Vrt [mm] 1.84 1.72 N/A 2.17 

Lat [mm] 1.02 0.68 N/A 0.78 

Table 17: Effect of gas on the standard deviation of intra-fraction 3D motion 

 

 

A change in gas appears to have a significant (>0.5mm) effect on mean intra-fraction 

motion along both the longitudinal and vertical axes. There is little effect along the lateral 

axis. The standard deviation of intra-fraction motion is not affected by gas to the same 

degree as mean intra-fraction motion. 
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Table 18 and Table 19 show the effect of pre-treatment gas on the mean and standard 

deviation of inter-fraction rotation, respectively. This rotation is not corrected for prior to 

treatment and consequentially may be important. 

 

Mean Inter-fraction Rotation 

 Pre N Pre Y 

Fractions 542 127 

Pitch [deg] -6.9 -4.2 

Roll [deg] 0.3 1.5 

Yaw [deg] 0.1 0.2 

Table 18: Effect of pre-treatment gas on mean inter-fraction rotation 

 

Standard Deviation of Inter-fraction Rotation 

 Pre N Pre Y 

Fractions 542 127 

Pitch [deg] 8.9 10.2 

Roll [deg] 3.0 3.4 

Yaw [deg] 4.6 4.8 

Table 19: Effect of pre-treatment gas on the standard deviation of inter-fraction rotation 

 

There are some rotation differences between fractions with/without pre-treatment gas. Pre-

treatment gas appears to increase the mean roll deviation from the treatment plan, but 

decrease the mean pitch deviation. The standard deviations of rotation is larger with pre-

treatment gas along all rotational axes, but most notably along the pitch axis. 

Table 20 and Table 21 show the effect of a change in gas during treatment on the mean and 

standard deviation of intra-fraction rotation, respectively. Intra-fraction rotations were 
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calculated as the difference between the post-treatment rotation correction and pre-

treatment rotation correction, as the rotations are not corrected for prior to treatment. 

 

Mean Intra-fraction Rotation 

 N-N N-Y Y-N Y-Y 

Fractions 502 26 1 122 

Pitch [deg] 1.1 -2.9 1.4 3.7 

Roll [deg] 0.1 0.3 -5.8 -0.1 

Yaw [deg] 0.2 -0.2 -0.4 0.0 

Table 20: Effect of a change in gas during treatment on mean intra-fraction rotation 

 

Standard Deviation of Intra-fraction Rotation 

 N-N N-Y Y-N Y-Y 

Fractions 502 26 1 122 

Pitch [deg] 5.0 4.9 N/A 6.8 

Roll [deg] 2.8 2.5 N/A 2.0 

Yaw [deg] 1.7 1.4 N/A 2.3 

Table 21: Effect of a change in gas during treatment on the standard deviation of intra-

fraction rotation 

 

There is a slight change in the mean intra-fraction pitch during treatment due to a change 

in gas. This is expected since the presence of gas is generally in the rectum, below the 

prostate. Mean intra-fraction roll and yaw are not affected to the same degree. Overall, 

there is little change in the standard deviation of intra-fraction rotation due to intra-

fractional gas change. 
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5.1.5 Population-Based Statistics 

Population-based motion statistics were compiled in order to gauge an average patient’s 

prostate intra-fraction motion. Table 22 shows the population average intra-fraction 

prostate motion. Motion was most prevalent along the vertical and longitudinal axes, as 

expected. In particular, the mean vertical motion showed a significant deviation along the 

vertical axis from planned location. Motion was considered significant if it is greater than 

0.5mm, which is the limit on precision of the couch motion. 

 

Population-based statistics for 3D intra-fraction motion 

 Vertical Longitudinal Lateral 

Mean [mm] -0.70 0.19 0.08 

Standard Deviation [mm] 1.92 1.71 0.96 

Table 22: Mean and standard deviation of intra-fraction motion for all 678 fractions 

 

To investigate the importance of motion asymmetry along any axis, the directionality of 

the motion (ex: positive vs negative longitudinal motion) was investigated (Table 23). 

There was a greater extent of mean intra-fraction motion posteriorly compared to 

anteriorly. A similar posterior drift of the prostate was found by others, who used real-time 

imaging, as well [39,40]. 

 

Directionality of 3D intra-fraction motion 

 Vrt (A) Vrt (P) Lng (I) Lng (S) Lat (R) Lat (L) 

Mean [mm] 1.25 -1.65 1.12 -1.24 0.65 -0.73 

Standard Deviation [mm] 1.37 1.34 1.15 1.42 0.67 0.69 

Table 23: Directionality of intra-fraction motion. Mean and standard deviation of intra-

fraction motion along the positive and negative directions for each axis 
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Population-based statistics were also compiled for rotations using 6D data. Table 24 and 

Table 25 show the mean and standard deviation of inter-fraction and intra-fraction 

rotations, respectively. The most significant rotation was the pitch, as expected. This 

corresponds to rotation about the lateral axis, the natural rotation axis of the pelvis. Pitch 

rotation may be influenced by a number of factors including variability in bladder fullness, 

rectal distension, and positioning on the couch. There was generally greater rotational error 

caused by inter-fraction rotation than intra-fraction rotation. 

 

Population-based statistics for 6D inter-fraction rotation 

 Pitch Roll Yaw 

Mean [deg] -6.4 0.5 0.1 

Standard Deviation [deg] 9.2 3.1 4.6 

Table 24: Mean and standard deviation of inter-fraction rotation for all 678 fractions 

 

Population-based statistics for 6D intra-fraction rotation 

 Pitch Roll Yaw 

Mean [deg] 1.4 0.1 0.2 

Standard Deviation [deg] 5.5 2.7 1.8 

Table 25: Mean and standard deviation of intra-fraction rotation for all 678 fractions 

 

The directionality of inter-fraction and intra-fraction rotation also reveals a large range of 

pitch rotation (Table 26 and Table 27). The extent of inter-fraction pitch along the negative 

direction is particularly large with a mean value of -10.0°.  Interestingly, this is contrasts 

intra-fraction pitch rotation, which has a larger extent of pitch rotation in the positive 

direction (4.1° vs -3.3°). Overall, there is again a greater extent of rotation error inter-

fractionally than intra-fractionally. 
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Directionality of 6D inter-fraction rotation 

 Pitch (+) Pitch (-) Roll (+) Roll (-) Rot (+) Rot (-) 

Mean [deg] 4.8 -10.0 2.7 -2.1 3.0 -2.5 

Standard Deviation [deg] 4.5 7.3 2.3 1.4 5.1 1.8 

Table 26: Directionality of patient rotation. Mean and standard deviation of inter-fraction 

rotation along the positive and negative directions for each axis 

 

Directionality of 6D intra-fraction rotation 

 Pitch (+) Pitch (-) Roll (+) Roll (-) Rot (+) Rot (-) 

Mean [deg] 4.1 -3.3 1.5 -1.5 1.2 -1.2 

Standard Deviation [deg] 4.2 4.2 2.5 1.8 1.2 1.6 

Table 27: Directionality of patient motion. Mean and standard deviation of intra-fraction 

rotation along the positive and negative directions for each axis 

 

5.2 Predictive Algorithm Benchmarking 

5.2.1 Number of Patients Required 

Using the simulated patient motion data, the feasibility of the various machine learning 

algorithms were investigated for potential use in predicting patient intra-fraction motion. 

Algorithms were evaluated using leave-one-out cross validation with default tuning 

parameters, as described in the methodology. Figure 7 shows the prediction mean absolute 

error (MAE) as a function of the number of simulated patients. Plotted MAE represents the 

mean value of 10 MAEs calculated on 10 independent trials. Error bars were omitted for 

clarity, but included in a duplicate plot within the appendix. 
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Figure 7: Projected performance of algorithms based on simulated data 

 

The models generally improved their performance with increased data. In particular, there 

was a large improvement in the performance of most of the models within the first 50-100 

patients. The algorithm’s performance also seemed to stop improving around the noise 

floor of 0.85mm in the simulated data. 

 

Models such as the linear model (which are more sensitive to noise), showed an even larger 

improvement in the earlier stages of data collection. In contrast to the linear model, 

regularized models, such as the Ridge and LASSO, were far more robust at lower numbers 

of sample data points. This robustness with small amounts of data generally comes at the 

expense of accuracy with large amounts of data. This was seen here for the LASSO, but 

not the Ridge model. 
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The MLP was a more complicated model, as it had a large number of parameters to be 

trained. Consequently, it required a larger sample of data before it improved to the same 

degree as the other models. It was the only model to see a significant improvement beyond 

200 patients. 

 

The kNN is a simple model that makes predictions by association. It performed well with 

few patients available, likely due to the similarity in motion between all patients, but it 

wasn’t able to improve its performance much with larger amounts of data. 

 

The linear SVR (SVR) attempted to find a linear solution such that none of the training 

data predictions differ from the true value by more than some user-specified threshold 

value. This value was set to 0.5mm, which reflects the resolution of margin definition in 

the treatment planning system, as explained in the methodology section. The SVR 

performed very well throughout and outperformed all others examined, except for the 

Ridge. 

 

The mean RSL was an ensemble algorithm with equal influence from the Linear, Ridge, 

and SVR models. It performed well, but not noticeably better than the Ridge or SVR 

independently. 

5.2.2 Evaluation of Algorithms 

Separate simulations using a single trial were done to provide a more detailed breakdown 

of algorithm performance. These simulations were performed for all algorithms, however 

only the Linear model, the Ridge model, and the MLP model are included here. Plots such 
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as those in Figure 8 to Figure 10 are useful to gauge how an algorithm is performing beyond 

a single metric and may be useful in future quality assurance protocols designed for 

statistical learning algorithms. 

 

The Linear algorithm showed the most improvement within the first 50-100 patients. A 

detailed breakdown of its performance is included in Figure 8, where it again shows a large 

degree of error with only 20 patients available, but improves its performance in simulations 

with larger numbers of patients. 

 

Figure 8: Performance of the Linear model using simulated data from 20, 50, and 200 

patients. 

The Ridge algorithm demonstrated the best performance overall in the simulations. Figure 

9 shows a detailed breakdown of its performance for a single trial. Compared to the Linear 

model, it shows improved performance in the lower number of patients regime, but 

performs similar to the Linear model at larger number of patients. 
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Figure 9: Performance of the Ridge model using simulated data from 20, 50, and 200 patients. 

 

Figure 10 shows the performance of the MLP algorithm for one trial. The MLP previously 

showed the greatest improvement with larger amounts of data. Here the MLP model 

performed relatively well early on, but didn’t improve its performance appreciably with 

200 patients. 
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Figure 10: Performance of the MLP model using simulated data from 20, 50, and 200 patients. 

 

5.2.3 Influence of Noise 

While the noise was estimated to be 0.85mm based on the radiation therapist inter-observer 

and intra-observer marker matching variability, the noise may differ from that amount in 

practice. It is therefore useful to see how these algorithms perform under different amounts 

of noise. At the very least, if the algorithms can improve their performance in the presence 

of a lot of noise, and if PSFs are at least partially relevant to intra-fraction motion, then the 

algorithms can be expected to improve their performance with real patient data. Some of 

the algorithms which seemed more useful were also investigated for the effects of different 

levels of noise in the data. Error bars were again omitted for clarity, but identical plots with 

error bars are available in the appendix. 
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Figure 11 shows the performance of the linear model at different levels of Gaussian patient 

motion noise. Overall, the linear model performed poorly in the presence of greater noise, 

likely the result of failing to distinguish between input data noise and underlying signal in 

the data. 

 

Figure 11: Effect of noise on linear model 

 

Figure 12 shows the effect of noise on the Ridge model. It performed better than the linear 

model with increased noise, especially with fewer patients. 
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Figure 12: Effect of noise on ridge model 

 

Finally, Figure 13 shows the effect of noise on the MLP model. It showed a more steady 

improvement, but was still hampered by the increased noise. 

 

Figure 13: Effect of noise on the MLP model 
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5.3 Predictive Algorithms Applied to Real Patient Data 

5.3.1 Intra-fraction Motion 

An identical methodology to the previous section was used on the sample of 21 patients. 

The LASSO model was selected based on having the lowest MAE along all of the three 

axis; however, the choice of algorithm could change with higher quantities of data. The 

algorithm was configured to predict both the mean and the standard deviation of a patient’s 

intra-fraction motion. 

 

Figure 14 shows that the LASSO model was able to predict the mean intra-fraction motion 

of the prostate to within 0.8mm MAE along all three directional axes. The vertical axis had 

the largest error whereas the lateral axis had the smallest error. This is not surprising given 

that the vertical axis had the largest standard deviation in mean intra-fraction motion 

whereas the lateral axis had the smallest (Table 22). 

 

Figure 14: LASSO algorithm prediction of a patient’s mean intra-fraction motion 
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Figure 15 shows that the LASSO was able to predict the standard deviation of the intra-

fraction motion of the prostate to within 0.4mm MAE along all three directional axes. The 

standard deviation of intra-fraction motion was predicted to a higher accuracy than the 

mean intra-fraction motion. 

 

Figure 15: LASSO algorithm prediction of the standard deviation of a patient’s intra-fraction 

motion 

5.3.2 Algorithm Coefficient Weighting 

Beyond the principle predictions produced by the algorithms, the coefficient weights 

assigned by the algorithm to each PSF were extracted. These were useful in order to gain 

insight into which PSFs are valued by the algorithm and will be helpful for feature selection 

when more data becomes available. A larger PSF coefficient means that an algorithm’s 

prediction was influenced more strongly by that particular PSF. A smaller PSF coefficient 

means that an algorithm’s prediction was influenced less strongly by that particular PSF. 
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Table 28 and Table 29 provide the PSF coefficients used for the LASSO model and Ridge 

model’s mean intra-fraction motions and standard deviations of intra-fraction motion 

predictions, respectively. The LASSO had the best performance of all the models and its 

PSF coefficients were all exactly zero. This may be an early indicator that the PSFs may 

not be very helpful in predicting intra-fraction motion; however more data would be 

required to validate this. To provide some contrast, the magnitude of the PSF coefficients 

from the Ridge model are also included for the mean (Table 28) and standard deviation 

(Table 29) predictions as well. The Ridge model’s PSF coefficients are clearly greater than 

zero in magnitude and, for n=21 patients, the Ridge model also performed more poorly 

than the LASSO model on the real patient data for both mean (Table 30) and standard 

deviation (Table 31). 
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Mean Intra-fraction Motion Coefficients 

 Longitudinal Vertical Lateral 

PSF Coefficient LASSO Ridge LASSO Ridge LASSO Ridge 

PSA Score 0 -0.0996 0 0.3529 0 0.0142 

Primary Gleason 0 0.0572 0 -0.0865 0 -0.0072 

Secondary Gleason 0 0.0253 0 0.1094 0 -0.0715 

Total Gleason 0 0.0590 0 0.0297 0 -0.0625 

Positive Cores 0 -0.2873 0 0.0328 0 0.0955 

Total Cores 0 0.1000 0 -0.0716 0 0.0439 

Age 0 0.1971 0 -0.0898 0 0.0940 

Weight 0 0.0424 0 0.0103 0 0.0267 

Diabetes 0 0.0426 0 -0.2514 0 -0.1903 

IBS 0 -0.1817 0 0.2848 0 -0.0196 

COPD 0 -0.0536 0 0.1774 0 0.1243 

Implants 0 0 0 0 0 0 

ECOG Status 0 0.3922 0 -0.4099 0 -0.0550 

BMI 0 -0.0474 0 0.0874 0 -0.0803 

Height 0 -0.1054 0 0.0919 0 0.2024 

IGRT 0 -0.1072 0 0.0284 0 -0.0714 

Table 28: PSF coefficients used in mean intra-fraction motion predictions for LASSO and 

Ridge models. 
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Standard Deviation of Intra-fraction Motion Coefficients 

 Longitudinal Vertical Lateral 

PSF Coefficient LASSO Ridge LASSO Ridge LASSO Ridge 

PSA Score 0 -0.0995 0 -0.0414 0 0.1540 

Primary Gleason 0 -0.1672 0 -0.0392 0 0.0145 

Secondary Gleason 0 0.2110 0 0.1547 0 -0.0036 

Total Gleason 0 0.0571 0 0.0981 0 0.0069 

Positive Cores 0 -0.1959 0 -0.2100 0 0.0210 

Total Cores 0 0.0710 0 -0.0014 0 -0.0672 

Age 0 0.1139 0 0.0716 0 0.1015 

Weight 0 0.0811 0 0.1094 0 -0.0878 

Diabetes 0 -0.1061 0 -0.0298 0 -0.0020 

IBS 0 0.1871 0 0.1812 0 0.0277 

COPD 0 0.1373 0 0.0692 0 -0.0736 

Implants 0 0 0 0 0 0 

ECOG Status 0 0.0525 0 -0.0267 0 -0.0041 

BMI 0 -0.0239 0 0.0367 0 -0.0158 

Height 0 0.0690 0 0.1449 0 -0.0578 

IGRT 0 0.1016 0 0.0631 0 -0.0466 

Table 29: PSF coefficients used in standard deviation of intra-fraction motion predictions 

for LASSO and Ridge models. 

 

Mean Intra-fraction motion 

 Longitudinal Vertical Lateral 

LASSO MAE [mm] 0.6 0.8 0.4 

Ridge MAE [mm] 1.5 1.6 0.6 

Table 30: Prediction error (MAE) comparison between LASSO and Ridge models for mean 

intra-fraction motion 
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Standard Deviation of Intra-fraction motion 

 Longitudinal Vertical Lateral 

LASSO MAE [mm] 0.4 0.4 0.3 

Ridge MAE [mm] 0.7 0.7 0.4 

Table 31: Prediction error (MAE) comparison between LASSO and Ridge models for 

standard deviation of intra-fraction motion 

 

A final note on the PSF coefficients is that the degree to which the LASSO model penalizes 

PSF coefficients can be changed by a tuneable parameter, α. This parameter tuning was 

discussed in detail in the statistics background section. Figure 16 provides an example of 

how parameter tuning can be performed with the LASSO model. This shows that, at least 

for n=21 patients, the smaller the PSF coefficients, the better the performance. A larger α 

forces the magnitude of the PSF coefficients to be smaller. 

 

Figure 16: LASSO MAE and magnitude of PSF coefficients plotted against choice of alpha 

tuneable parameter 
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5.4 Generating Margins 

5.4.1 Population-Based Margin 

Using population-based motion statistics as well as other center-specific radiation therapy 

set-up and delivery uncertainties a population-based margin was generated using van Herk 

approach [6] outlined in the methodology. Table 32 provides estimates for these errors 

along with the associated PTV margin. 

 

Error Source Vertical [mm] Longitudinal [mm] Lateral [mm] 

Systematic Error 1.3 1.7 1.0 

Target Delineation 0.7 1.3 0.7 

Setup 0.5 0.5 0.5 

Inter-fraction motion 0.0 0.0 0.0 

Intra-fraction motion 1.0 0.9 0.5 

Random Error 1.9 1.8 1.2 

Setup 0.9 0.9 0.9 

Inter-fraction motion 0.0 0.0 0.0 

Intra-fraction motion 1.7 1.5 0.8 

Population-based PTV Margin 

Systematic PTV Component 3.3 4.2 2.5 

Random PTV Component 1.4 1.2 0.8 

PTV Margin 4.7 5.4 3.3 

Table 32: Population-based PTV margin and errors 

 

Currently at VIC, a 7mm uniform margin is used with the potential for reduction down to 

5mm in the direction of the rectum if required when using kV-kV seed matching. Using 

this approach, it appears as though that PTV margin can be reduced from 7mm. 
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5.4.2 Personalized Margin 

A variation on the van Herk formula was used to generate a personalized margin based on 

the predictions of intra-fraction motion combined with center-specific system and random 

uncertainties in treatment set-up and delivery. 

 

𝑃𝑇𝑉 𝑀𝑎𝑟𝑔𝑖𝑛 = 2.5∑𝑝𝑜𝑝 + 0.7𝜎𝑝𝑒𝑟𝑠 

 

Where Σ𝑝𝑜𝑝 is the total population-based systematic error and 𝜎𝑝𝑒𝑟𝑠 is the total 

personalized random error. Σ𝑝𝑜𝑝 is composed of error contributions caused by systematic 

error in delineation, set-up, and motion. 𝜎𝑝𝑒𝑟𝑠 is composed of error contributions caused by 

random population-based error in set-up and random personalized error in motion. While 

the mean personalized intra-fraction motion, 𝑀𝑝𝑒𝑟𝑠, is also predicted using the algorithms, 

this was not considered in generating a personalized PTV margin since 𝑀𝑝𝑒𝑟𝑠 corresponds 

to a couch shift, rather than an uncertainty. However, this could be potentially useful for 

identifying patients that require more resources (time, imaging, tracking) because of their 

pre-disposition to large systematic motion. 

 

Table 33 provides estimates for these errors along with the associated PTV margin for one 

patient. For n=21 patients, the personalized margin is identical to the population-based 

margin because the best algorithm ignored all input due to PSFs. However it has the 

opportunity to be personalized if PSFs prove to be more impactful on motion with more 

data. 
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Error Source Vertical [mm] Longitudinal [mm] Lateral [mm] 

Systematic Error 1.3 1.7 1.0 

Target Delineation 0.7 1.3 0.7 

Setup 0.5 0.5 0.5 

Inter-fraction motion 0.0 0.0 0.0 

Intra-fraction motion 1.0 0.9 0.5 

Random Error 1.9 1.8 1.2 

Setup 0.9 0.9 0.9 

Inter-fraction motion 0.0 0.0 0.0 

Intra-fraction motion 1.7 1.5 0.8 

Personalized PTV Margin 

Systematic PTV Component 3.3 4.2 2.5 

Random PTV Component 1.4 1.2 0.8 

PTV Margin 4.7 5.4 3.3 

Treatment Planning PTV 5 6 4 

Table 33: Personalized PTV margin for one patient 

 

Two plans were generated for this patient. One used the prior PTV margin and one used 

the newly calculated PTV margin. The prescription dose for both plans was 78 Gy 

delivered over 39 fractions and planned such that 100% of the prescription dose covers 

98% of the PTV. The new treatment planning PTV margin (Table 33) was calculated by 

rounding-up the personalized PTV margin to the nearest integer. This was done because 

the treatment planning system only allows integer value margins. The two plans used 

identical optimization. 

 

Figure 17 shows the two PTV margins and the treatment planning dose distributions. The 

new PTV is the plan on the left. The previous PTV plan is the one on the right. The new 

plan was acceptable for minimum dose (96.6%), maximum dose (103.3%), and uniformity. 
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The new plan achieves the same prescription dose to 98% of the volume as the original 

plan. 

 

 

Figure 17: Comparison of original PTV and new PTV for one patient (red contours). The new 

PTV is on the left. The original PTV is on the right. 

 

Two important organs-at-risk (OARs) for prostate treatment are the rectum and the bladder. 

Figure 18 shows that there is evidence of increased bladder and rectum sparing with the 

new PTV margin. Both the rectum and bladder are irradiated to a lower dose overall. Figure 

18 shows that the 95% isodose infringes on these structures to a lesser degree with the new 

PTV compared to the original PTV. 
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Figure 18: Dose distribution near important organs-at-risk. The bladder (green contour) and 

rectum (brown contour) are both shown here. The new PTV plan is on the left. The original 

PTV plan is on the right. The PTV (red contour) is visible in this slice on the original plan 

only. The PTV used for the new plan does not extend into this slice. 

 

The normal tissue sparing becomes more apparent when looking at the dose volume 

histogram (DVH) (Figure 19). A smaller volume of the bladder and rectum are irradiated 

and to a lower dose when using the plan with the new PTV. Additional statistics are 

included in Table 34, which also show sparing in the bladder (green contour) and the 

rectum (brown contour). In addition to the bladder and rectum, the left and right femoral 

heads (pink and orange contours) also show evidence of sparing. Meanwhile the original 

and new PTVs are irradiated to the same coverage: 98% of the PTV receives 100% of the 

prescription dose. 
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Figure 19: Dose-volume histogram (DVH) of PTV and OAR volumes under both the new and 

original plans. The new and original PTVs are irradiated to the same coverage. The OAR all 

receive lower dose when using the new PTV compared to the original PTV. 

 

 

Bladder Rectum 

Original 
PTV 

New PTV Improvement 
Original 

PTV 
New PTV Improvement 

V70 (%) 3.4 2.7 0.7 12.3 8.5 3.8 

V50 (%) 6.6 5.6 1.0 28.8 23.5 5.3 

V30 (%) 12.6 10.5 2.1 50.1 43.8 6.3 

V20 (%) 17.0 15.4 1.6 65.5 60.9 4.6 

Table 34: Relative volume receiving at least 70, 50, 30, and 20 Gy, respectively. 
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6 Discussion 

 

6.1 Analysis of Patient Specific Factors for Real Patients 

Collecting all PSFs posed some challenges due to accessibility to patient records and data 

availability. Originally, 17 PSFs were to be recorded. From these, 2 (Race and Staging) 

had to be omitted. Only 1 (ECOG status) of the remaining 15 PSFs did not have a value 

associated with each patient. 

 

Pearson and Spearman correlation tests were performed on each of the PSFs in order to 

identify useful indicators related to intra-fraction prostate motion and intra- and inter-

fraction prostate rotation. The correlations between PSFs and longitudinal or vertical 

motion were of particular interest as there was a larger deviation between the patients along 

these axes, allowing for a greater degree of personalization. Similarly for rotations, the 

pitch was considered more important than the roll and yaw axes. Overall, there were no 

outstandingly strong correlations between any of the PSFs and motion/rotation (Table 9 - 

Table 14) for n=21 patients. 

 

As there were no strong correlations, it is difficult to say which PSFs may be important to 

monitor in use in predicting intra-fraction motion, but one of interest may be ECOG status. 

The Pearson and Spearman correlations between ECOG and mean longitudinal intra-

fraction motion were 0.38 and 0.51, respectively, which is not statistically powerful. 

However, by breaking down the ECOG into two groups of patients, those experiencing no 

difficulty in their daily life (ECOG = 0) and those experiencing at least some difficulty in 
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their daily life (ECOG > 0) (rather than the original six groups), there does appear to be a 

difference in the mean longitudinal intra-fraction motion (Table 35). The sample size for 

the two groups is still small, but it is interesting nonetheless. 

 

 ECOG = 0 ECOG > 0 

Number of Patients 9 8 

Mean Intra-fraction Lng Motion [mm] -0.18 0.83 

Table 35: Mean intra-fraction longitudinal motion between ECOG status 

 

Another PSF of interest was BMI since a previous study had found a correlation between 

BMI and intra-fraction motion. Namely, a larger BMI was related to a smaller standard 

deviation of intra-fraction motion, in particular along the longitudinal axis [23]. Figure 20 

shows the relationship found here between standard deviation of intra-fraction longitudinal 

motion and BMI. While there is one outlier point that happens to be associated with a large 

BMI and a small motion, there doesn’t appear to be any underlying relationship; however, 

more data is needed to verify this. 
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Figure 20: Scatterplot between BMI and standard deviation of intra-fraction longitudinal 

motion 

 

6.2 Time Dependent Data 

One of the more significant results of the study was the correlation between vertical and 

longitudinal intra-fraction motions. This type of correlation has been seen before by others 

[41]. These motions are likely related due to pelvic tilt, but also possibly rectal distension. 

Both these factors affect motion along the longitudinal and vertical axes where the majority 

of motion occurs. 

 

A second result was the lack of correlation between intra-fraction motion and all fractions 

timestamps. Table 36 provides the range of times sampled for each timestamp. The 

magnitude of all Pearson and Spearman correlations between time stamps and intra-

fraction motions were less than 0.30. 
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Time Stamp N Mean [s] Standard Deviation [s] Minimum [s] Maximum [s] 

First Beam 668 112.7 53.3 67.0 676.0 

Last Beam 663 280.3 61.8 197.0 891.0 

Total Time 658 307.5 62.2 210.0 916.0 

Beam-on Time 

me 

663 167.5 23.4 110.0 346.0 

Table 36: Range of sampled timestamps and correlations with intra-fraction motion 

 

As mentioned earlier, previous studies had found a relationship between these parameters. 

Namely, as treatment times decrease, motion tends to decrease as well [33,38,39]. Two of 

these studies ( [33] and [39]) used real-time tracking throughout treatment. Tracking times 

for treatment fractions in these studies ranged from 8.1 min to 24 min and 2.5 min to 18.4 

min, respectively, and motion tended to increase throughout treatment. The third study ( 

[38]) took multiple EPID images during each treatment beam in order to monitor the 

amount of intra-fraction motion. They found that a larger amount of motion occurred in 

approximately the first 2 minutes of treatment, after which the motion lessened. 

 

While the time-dependence results found in this thesis work may be an accurate 

representation of the process at VIC, the lack of correlation compared to the results seen in 

the literature could also be due to poor resolution of timestamps/sampling of the motion. 

There were only three timestamps recorded: Time of first beam, time of last-beam, and the 

total time that the patient file was open. The time between the first and last beam 

timestamps was also inferred (called ‘Beam-on Time’), but found to be uncorrelated as 

well. It is possible that this time-dependence occurred too quickly to capture with our 

sampling, given that our mean treatment times were around 2 min to the first treatment 

beam, then 2-3 min to deliver the beams. 
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An interesting approach that could be implemented at VIC is to take an MV image 

perpendicular to the longitudinal and vertical axes, immediately prior to treatment and 

simultaneous with another time stamp, in addition to the pre-treatment and post-treatment 

imaging. This would provide insight into how the prostate has moved prior to the treatment, 

but after image guidance with on-board imaging. This new timestamp could be used to test 

the influence of time on intra-fraction motion by measuring the motion during the time 

between pre-treatment image guidance and the MV image (very close to treatment beam) 

and the time between the MV image and the post-treatment imaging. 

 

More generally, this additional image would provide insight into the degree to which intra-

fraction motion of the prostate should be treated as a systematic error versus random error. 

While intra-fraction motion will always introduce random error (motion about a mean 

position), the results presented in this thesis suggest there may be a not insignificant 

posterior shift in the mean prostate position in the population of patients caused by intra-

fraction motion. It has been seen elsewhere [41,42,43] that the majority of this intra-

fraction prostate shift may actually occur before the first treatment beam, possibly due to a 

slow relaxation of pelvic muscles after the patient has been positioned on the couch. The 

timing of this shift with respect to the image guidance and treatment beams (along with the 

reproducibility of the timing of the shift across the population of patients) is important in 

determining its significance as a systematic error. 

 

Finally, with knowledge of the shift’s time-dependence, treatment may be better 

personalized through PSFs as well. BMI and weight for example, are two PSFs that, at least 
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intuitively, could affect the rate of prostate shift rather than the final prostate shift. Of 

course, a real-time imaging system would be the best method to identify the time-

dependence of prostate motion [39,44] and its possible relationship with PSFs. 

 

6.3 Rectal Distension 

The data showed a relationship between changes in gas and intra-fraction motion during 

treatment fractions. The mean motion was strongly affected along the longitudinal and 

vertical axis. Motion along these axes was expected due to the position of the rectum under 

the prostate. The mean lateral motion did not appear to be affect by a change in gas. The 

standard deviation of intra-fraction motion also did not appear to be affected by a change 

in gas. 

 

The inter-fraction rotation data suggested that the presence of pre-treatment gas affected 

the rotation of the prostate. The pitch and roll were affected, which is again understandable 

given the position of the prostate with respect to the rectum. The standard deviation was 

affected along the pitch rotation axis to a small degree. This may be statistical or it may be 

due to the poor resolution of gas classification used. For example, a patient may have had 

a “small” amount of gas or a “large” amount of gas, but both of these cases would have 

been binned together as “having gas”. This would have caused a change in the standard 

deviation of the pitch rotation (and likely influence the other rotational axes to some degree 

as well). Furthermore, gas information can be challenging to infer from the images given 

the overlapping anatomy present in the orthogonal images. This contributes to errors 

(variability) in classifying the presence of gas from treatment fraction images. 
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The mean intra-fraction pitch rotation was more negative (i.e. rotated from the patient’s 

head towards their feet) when a change in gas occurred during treatment fraction. The other 

axes were not affected intra-fractionally by a change in gas. The standard deviation of all 

the intra-fraction rotations were not affected in a meaningful way. 

 

Overall, gas had the largest influence on the mean prostate shifts vertically and 

longitudinally, where a change in gas resulted in a prostate shift of approximately 1mm 

along those axes. A 1mm shift is important, but is also within the standard deviation of 

typical mean prostate motion along those axes over a course of radiation therapy. As a 

random occurrence, this gas change is therefore likely accounted for by a population-based 

PTV margin. However, patients who experience more frequent gas (multiple fractions) 

may not be adequately covered. 

 

Table 37 breaks down patient treatment fractions in terms of a change in gas state. While 

a change in gas only occurred in 27 of the 669 total fractions (4.0%) surveyed here – a 

seemingly small number – these higher risk fractions were not uniformly distributed 

amongst the patients. More specifically, only 6 out of the 21 total patients (28.6%) had 

multiple gas change fractions (highlighted in red), but these patients accounted for 24 of 

the 27 total gas change fractions (88.9%). Patient 1 was the most remarkable in this regard, 

as a change in gas occurred in 7 of their 38 fractions (18.4%). Given the contrast between 

patients in terms of the number of fractions affected by gas, along with the impact of gas 
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on intra-fraction motion, there is possibly an opportunity here for further PTV margin 

personalization. 

 

Patient Total Fractions Fractions with Gas Change 
Percent of Fractions with 

Gas Change (%) 

1 38 7 18.4 

2 39 3 7.7 

3 28 0 0.0 

4 39 0 0.0 

5 28 0 0.0 

6 28 0 0.0 

7 28 4 14.3 

8 28 0 0.0 

9 39 3 7.7 

10 39 0 0.0 

11 27 0 0.0 

12 28 0 0.0 

13 26 3 11.5 

14 28 0 0.0 

15 39 0 0.0 

16 38 1 2.6 

17 28 4 14.3 

18 37 1 2.7 

19 28 0 0.0 

20 28 0 0.0 

21 28 1 3.6 

Table 37: Occurrence of a change in gas broken down by individual patient. Patients with 

greater than 1 fractions with a gas change are highlighted in red. 
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As far as the rotations are concerned, gas had the largest impact on mean intra-fraction 

pitch with a roughly 4° difference between fractions with and without gas change. There is 

not a lot of information available about the dosimetric consequences of prostate rotation. 

These rotations may not be consequential to the prostate [45], which is understandable 

considering that the prostate is roughly spherical. That being said, rotational errors may be 

of greater important to the seminal vesicles, as they may experience greater under-dosage 

due to rotation given their anatomical position [46]. 

 

6.4 Population-based Statistics 

One of the more important results of the study was a systematic mean intra-fractional 

prostate shift posteriorly, similarly observed by others [39,40,41,44] which may be due to 

gradual relaxation of the pelvic muscles. Longitudinal and lateral intra-fractional shifts 

were less significant. The standard deviation of intra-fraction motion was greater along the 

vertical and longitudinal axes than the lateral axis. This is further evidence that the range 

of motion is greatest along the vertical and longitudinal axes. 

 

The directionality of intra-fraction motion again shows a greater mean prostate motion 

posteriorly, rather than anteriorly. The anterior and posterior directions have similar 

standard deviations, however, which suggests that the motion is consistent in either 

direction. In contrast to this, the longitudinal directionality reveals a larger standard 

deviation in the superior motion than the inferior motion, which suggests that inferior intra-

fraction motion is more consistent than superior intra-fraction motion. 
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The extent of inter- and intra-fraction rotations tended to be important only along the pitch 

rotation axis. Inter-fraction pitch had mean value of -6.4°, which is larger than in the other 

axes. A negative pitch could be caused by a relaxation of the pelvic muscles during 

treatment fractions compared to during CT simulation, possibly due to patient stress. It has 

been suggested that systematic pitch rotations greater in magnitude than 5° are 

dosimetrically important [47], but this is not well known. 

 

Another interesting result is the directionality of inter-fraction pitch rotation. The extent of 

mean negative inter-fraction pitch is large (-10.0°) and approximately double the extent of 

mean positive inter-fraction pitch (4.8°). This result echoes the result of the mean inter-

fraction motion: Prostate treatment fraction rotation anterior to inferior may be more 

accessible to the patient than rotation anterior to superior, at least compared to simulation 

CT. This may be caused by abdominal strain during simulation CT compared to subsequent 

treatment fractions, making pelvic rotations more accessible in one direction compared to 

the other. Further investigation into the dosimetric effects of the rotations are required to 

gauge the importance of these rotations. 

 

6.5 Predictive Algorithm Benchmarking 

Several regression algorithms were investigated for use in predicting a patient’s intra-

fraction motion based on their unique PSFs. While there was uncertainty in the generation 

of the simulated data (as it is impossible to totally mimic the real distributions of patient 

motion and PSFs), this benchmarking provides some groundwork for how they can be 

expected to perform on similar data going forward. 
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Based on the results of the simulations, it appears as though the Ridge model is a good 

candidate for future use as it performed at or near the best of all the algorithms throughout. 

It is a relatively simple model which uses a penalty term in the objective function to limit 

the influence of noise in the determination of model parameters, and is simple, easily 

interpretable, and robust to noise. Compared to the LASSO model (the other regularized 

regression model), the Ridge model also deals with collinearity between PSFs better, which 

is also advantageous. 

 

Another key result of the simulations was a significant improvement in algorithm 

predictive performance within the first 50-100 patients. Furthermore, the algorithms 

experienced this improvement with different levels of noise. If the performance of the 

algorithms does not improve after using approximately 100 patients for training, it would 

seem unlikely that predicting intra-fraction motion based on PSFs is useful/feasible. 

 

Finally, a large sample of real patient data is required to understand the true predictive 

capabilities of any of the algorithms because it is impossible to know the underlying 

correlations between PSFs and motion given the noise in the collected motion data. The 

performance of the algorithms, even with a large sample of patients, is limited by the 

underlying noise in the dataset. 

 

6.6 Predictive Algorithms for Real Patient Data 

The LASSO model performed the best of all the predictive algorithms on the patient data. 

It predicted mean intra-fraction motion to within 0.8mm MAE and standard deviation of 
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intra-fraction to within 0.4mm. Unfortunately, this algorithm also ignored the input of the 

PSFs to the largest degree. It effectively predicted an identical motion for each patient 

making it a robust predictor, which is important, but not necessarily a personalized 

predictor. Ultimately, the collection of a larger quantity of data will determine the 

feasibility of this kind of personalization. 

 

The collection of more data will allow users to better select which PSFs are relevant to 

predicting intra-fraction motion. One simple approach for doing this is to threshold the 

PSFs based on their correlation. For example, any PSF with a Pearson correlation greater 

than 0.4 could be included as an input to the algorithm, whereas PSFs with a Pearson 

correlation below 0.4 would be excluded. Another approach is to choose a fixed number of 

inputs and populate those inputs based on the performance of the algorithm. For example, 

5 input parameters may be chosen for the algorithm and the performance of the algorithm 

could be evaluated by cross-validation using only the 5 most correlated PSFs in each cross-

validation subset. 

 

Parameter tuning may also be useful in identifying pertinent PSFs. In this work, the LASSO 

model performed better when no consideration was given to the PSFs. However, if more 

patients are collected, parameter tuning may reveal that the best performance comes at 

some value of α where some of the PSF coefficients are non-zero. This would again be 

useful in choosing appropriate PSFs as inputs to the algorithm. 
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6.7 PTV Margin Evaluation 

Two approaches to PTV margin generation were presented in this work: A population-

based approach, and a personalized approach. 

 

The population-based approach revealed a possible opportunity to reduce margins for 

prostate external beam radiation therapy from the 7mm which is currently used at VIC. 

This work would see treatment planning PTV margin (rounded up to the nearest integer) 

of 5mm, 6mm, and 4mm in each of the vertical, longitudinal, and lateral directions. This 

corresponds to a reduction of 2mm vertically, 1mm longitudinally, and 3mm laterally. The 

results point to a lateral PTV margin reduction especially, considering that both the mean 

and standard deviation of intra-fraction motion is roughly halved along the lateral axis 

compared to the longitudinal and vertical axes. 

 

Personalized margin methodology was similar to population-based margin generation, 

except the population random motion error was replaced by a personalized random error. 

For n=21 patients, however, the personalized margin was identical to the population-based 

margin, since the best algorithm did not rely on PSF data. 

 

The new margin was tested on one patient and appropriately covered the PTV with a 

uniform dose distribution between 95% and 107% of the prescribed dose. The new margin 

also showed evidence of normal tissue sparing, based on both the dose-volume histogram 

information and the dose distributions. While these results only reflect the treatment 
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planning dose distributions, it can be concluded that there is potential clinical benefit to 

normal tissues by reducing PTV margins. 

 

Moving forward, the greatest opportunity for personalization appears to be by accounting 

for inter-patient differences in mean intra-fraction motion, particularly along the 

longitudinal and vertical axes (Table 38). The standard deviation in the individual patient 

random motion (σi) along any of the directions is relatively small compared to the standard 

deviation in the individual patient systematic motion (μi). 

 

Reproducibility of 3D intra-fraction motion 

 Longitudinal Vertical Lateral 

Standard deviation of μi [mm] 0.94 1.04 0.54 

Standard Deviation of σi [mm] 0.54 0.46 0.30 

Table 38: Reproducibility of 3D intra-fraction motion 

 

Accounting for a systematic intra-fraction motion may be challenging in practice. One 

approach may be to identify high risk patients based on the extent of their anticipated 

systematic intra-fraction motion, and then put additional efforts into supressing and/or 

otherwise accounting for their motion. In particular, if the expected systematic motion is 

caused by prostate drift prior to the first treatment beam, this correction could be as simple 

as allowing a few extra minutes for the high-risk patient to lay on the couch prior to image 

guidance. 
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7. Conclusion 

 

The purpose of this thesis was to investigate the feasibility of personalized PTV margins 

for EBRT of the prostate, with particular emphasis on regression-based predictive 

algorithms. Patient motions and rotations were analysed for correlation with their potential 

predictors, the PSFs, using Pearson and Spearman correlation tests. Population-based 

statistics were used to gauge the typical range of motions/rotations for prostate cancer 

patients at VIC, as well as identify important motion/rotation directions for personalization. 

Predictive algorithms were benchmarked for predicting intra-fraction motion of the 

prostate using clinically relevant, simulated PSFs and motion data. Benchmarked 

algorithms were applied to actual patient data and evaluated for use in predicting intra-

fraction motion along all three spatial directions. The algorithm with the best performance 

(smallest error) was used to estimate a personalized PTV margin. 

 

Overall, the results of the Pearson and Spearman correlation tests revealed no outstanding, 

strong correlations between any of the PSFs and motion/rotation. Motion along the vertical 

and longitudinal axes, as well as pitch rotation offered the largest opportunity for 

personalization given the relatively large standard deviations along those axes. Predictive 

algorithms benchmarking indicated that the Ridge regression algorithm is a good candidate 

for future use as it performed at or near the best of all the algorithms throughout and 

algorithm performance should improve significantly within the first 50-100 patients. The 

LASSO model performed the best on actual patient data by ignoring the input of the PSFs 

suggesting that a regression-based PTV margin personalization may not be useful. More 
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data (at least 50 patients) is required to evaluate this assertion however, as seen in the 

simulation results.  

 

A population-based margin and a personalized margin were developed. The two margins 

were ultimately identical since the best algorithm did not rely on the PSF data. The new 

margin was non-isotropic and extended 5mm, 6mm, and 4mm in each of the vertical, 

longitudinal, and lateral directions, corresponding to a reduction of 2mm vertically, 1mm 

longitudinally, and 3mm laterally from the isotropic 7mm margin which is currently used 

at VIC. The results point to a lateral PTV margin reduction especially, considering that 

both the mean and standard deviation of intra-fraction motion is roughly halved along the 

lateral axis compared to the longitudinal and vertical axes. The new margin achieved 

similar PTV coverage compared to the current PTV margin, but also showed evidence of 

normal tissue sparing. 

 

Beyond the primary thesis objective, other interesting results were found. A strong 

correlation was found between the vertical and longitudinal axes, likely the result of intra-

fraction pelvic tilt and/or rectal distension. There was no correlation found between BMI 

and any intra-fraction motion/rotation, in contrast to results found in a previous study [23]. 

The time dependent data also revealed no correlation between the recorded treatment time 

stamps and intra-fraction motion, also in contrast to prior studies [33]. This result may be 

due to poor timestamp resolution, however, and could benefit by taking an additional image 

immediately prior to the first treatment beam. Rectal distension had a large impact (~1mm) 

on the mean intra-fraction motion of the prostate vertically and longitudinally. While a 
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single case of rectal distension over the course of approximately 35 fractions is likely 

acceptable using a population-based PTV margin, repeated instances of rectal distension 

may be significant to treatment outcome and offer opportunity for PTV margin 

personalization by expanding the margin of those patients most affected by rectal 

distension and for those undergoing hypo-fractionated (~5 fraction) treatment schedules. 

Population-based statistics revealed a systematic mean intra-fraction prostate shift in the 

posterior direction. This has been seen elsewhere [39,40,41,44] and may be due to a 

relaxation of the pelvic muscles. Going forward, treatment could be personalized by 

identifying high risk patients (possibly via PSFs) and simply allowing them more on-couch 

time for muscle relaxation prior to image guidance. 

 

To the writer’s knowledge, this is the first effort at generating personalized PTV margins 

using an all-encompassing approach via PSFs. Others have investigated the influence of a 

single PSF [23], or generated personalized margins based on real-time prostate motion 

alone [48] without consideration for motion causation, however. 

 

Moving forward it will be important to investigate whether there is merit to personalization 

given the additional uncertainties introduced by using a statistical algorithm. It will likely 

depend on the ultimate strength of the motion predictors (PSFs) as well as the opportunity 

for improvement. For example, based on the results presented in this thesis, it seems much 

more possible that PTV margin personalization will be used along the longitudinal and 

vertical axes compared to the lateral axis, based solely on the inter-patient variance in 

motion along those axes. 
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7.1 Future Work 

For the immediate future, a useful study at VIC is to test the time-dependence of intra-

fraction prostate motion. This can be done using two methods: 

 

1. Set aside a group of patients and allow them more on-couch pre-image guidance 

time for possible pelvic muscle relaxation and compare the distribution of 

motions/rotations with respect to patients that did not receive additional on-couch 

time. 

2. Take an additional MV image immediately prior to the first treatment beam in order 

to gauge the amount of intra-fraction motion that occurs after image guidance, but 

before the first treatment beam with the total intra-fraction motion. 

 

In the longer term future, moving forward toward personalized PTV margins for prostate 

cancer (and personalized medicine in general), it is important to amalgamate data from 

several institutions in order to achieve the most conclusive information. This is challenging 

however, not just because of patient data confidentiality and sharing of that information, 

but also because the process at each institution is different and therefore not necessarily 

representative of same information. It is still a useful endeavour as long as the patients are 

properly labelled with their corresponding institution, allowing for the distribution of 

patient attributes (PSFs, treatment parameters, motion, etc.) at each institution can be 

compared and contrasted. 
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Ideally this data collection is a fully automated process where patient data (demographic, 

treatment, motion, institution, etc.) are all collected and automatically synced into a 

common database without middle-people such as physicians and therapists. One could 

simply select the type of treatment (prostate EBRT) and the motion collection would be 

automated through post-treatment imaging and matching, for example, and uploaded to the 

database (after proper anonymization). 

 

The ideal motion tracking would be performed using real-time tracking software that is 

currently available (such as the Calypso 4D Localization System). This would allow for 

statistics to be performed on a single fraction basis, offering better insight into the day-to-

day differences in patient anatomy, physiology, and behaviour, and their resultant impact 

on intra-fraction motion of the prostate. In particular, real-time motion tracking would 

provide crucial information on the time dependence of prostate motion. A patient may have 

a stable prostate throughout the treatment fraction, a slow prostate drift during the fraction, 

or a more erratic prostate motion. Time-dependent prostate motions such as these have 

been seen before [44]. Furthermore, patients may be able to be classified according to their 

respective type of prostate motion based on their unique PSFs. Patients classified with 

erratic prostate motion could then be planned with a larger PTV compared to patients 

classified with a stable prostate, for example. 

 

Finally, given the decreasing cost of data storage and genome sequencing techniques [49], 

it is not inconceivable that one day a patient’s genome could be sequenced as a regular part 

of treatment planning. This could provide the ultimate predictors (PSFs) and could be 
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identified using algorithms discussed in this thesis. This type of data could be also useful 

for personalized prescription radiation doses via inter-patient differences in radio 

sensitivity for example, in addition to intra-fraction motion predictions. 
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Appendix 

 

Example csv file templates and assorted plots with error bars are presented here. 

 

 

Figure 21: Example of time dependent csv file input for one patient. 

 

 

 

Figure 22: Example of time independent csv file input for one patient 
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Figure 23: Projected performance of algorithms based on simulated data (with error bars) 

 

 

Figure 24: Effect of noise on linear model (with error bars) 
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Figure 25: Effect of noise on ridge model (with error bars) 

 

 

 

Figure 26: Effect of noise on MLP model (with error bars) 

 

 


